Step * 1 1 1 1 1 1 of Lemma arctangent-bounds


1. : ℝ
2. : ℕ
3. r(-n) ≤ x
4. x ≤ r(n)
5. : ℝ
6. r0 < d
7. ∀y:ℝ
     (((r(-5) ≤ -(π/2)) ∧ (-(π/2) ≤ r(5)))
      ((r(-5) ≤ y) ∧ (y ≤ r(5)))
      (|-(π/2) y| ≤ d)
      (|rcos(-(π/2)) rcos(y)| ≤ (r1/r((2 n) 1))))
⊢ ∃a:{a:ℝa ∈ (-(π/2), r0)} (((r(2 n) rcos(a)) < r1) ∧ (rsin(a) ≤ (r(-1)/r(2))))
BY
((InstLemma `function-is-continuous` [⌜(-∞, ∞)⌝;⌜λ2x.rsin(x)⌝]⋅ THENA Auto)
   THEN (D -1 With ⌜5⌝  THENA (Auto THEN RepUR ``i-approx`` THEN Auto))
   THEN RepUR ``i-approx`` -1
   THEN (D -1 With ⌜2⌝  THENA Auto)
   THEN ExRepD
   THEN (D -1 With ⌜-(π/2)⌝  THENA Auto)
   THEN (RWW "rsin-rminus rsin-halfpi" (-1) THENA Auto)) }

1
1. : ℝ
2. : ℕ
3. r(-n) ≤ x
4. x ≤ r(n)
5. : ℝ
6. r0 < d
7. ∀y:ℝ
     (((r(-5) ≤ -(π/2)) ∧ (-(π/2) ≤ r(5)))
      ((r(-5) ≤ y) ∧ (y ≤ r(5)))
      (|-(π/2) y| ≤ d)
      (|rcos(-(π/2)) rcos(y)| ≤ (r1/r((2 n) 1))))
8. d1 : ℝ
9. r0 < d1
10. ∀y:ℝ
      (((r(-5) ≤ -(π/2)) ∧ (-(π/2) ≤ r(5)))
       ((r(-5) ≤ y) ∧ (y ≤ r(5)))
       (|-(π/2) y| ≤ d1)
       (|-(r1) rsin(y)| ≤ (r1/r(2))))
⊢ ∃a:{a:ℝa ∈ (-(π/2), r0)} (((r(2 n) rcos(a)) < r1) ∧ (rsin(a) ≤ (r(-1)/r(2))))


Latex:


Latex:

1.  x  :  \mBbbR{}
2.  n  :  \mBbbN{}
3.  r(-n)  \mleq{}  x
4.  x  \mleq{}  r(n)
5.  d  :  \mBbbR{}
6.  r0  <  d
7.  \mforall{}y:\mBbbR{}
          (((r(-5)  \mleq{}  -(\mpi{}/2))  \mwedge{}  (-(\mpi{}/2)  \mleq{}  r(5)))
          {}\mRightarrow{}  ((r(-5)  \mleq{}  y)  \mwedge{}  (y  \mleq{}  r(5)))
          {}\mRightarrow{}  (|-(\mpi{}/2)  -  y|  \mleq{}  d)
          {}\mRightarrow{}  (|rcos(-(\mpi{}/2))  -  rcos(y)|  \mleq{}  (r1/r((2  *  n)  +  1))))
\mvdash{}  \mexists{}a:\{a:\mBbbR{}|  a  \mmember{}  (-(\mpi{}/2),  r0)\}  .  (((r(2  *  n)  *  rcos(a))  <  r1)  \mwedge{}  (rsin(a)  \mleq{}  (r(-1)/r(2))))


By


Latex:
((InstLemma  `function-is-continuous`  [\mkleeneopen{}(-\minfty{},  \minfty{})\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.rsin(x)\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  (D  -1  With  \mkleeneopen{}5\mkleeneclose{}    THENA  (Auto  THEN  RepUR  ``i-approx``  0  THEN  Auto))
  THEN  RepUR  ``i-approx``  -1
  THEN  (D  -1  With  \mkleeneopen{}2\mkleeneclose{}    THENA  Auto)
  THEN  ExRepD
  THEN  (D  -1  With  \mkleeneopen{}-(\mpi{}/2)\mkleeneclose{}    THENA  Auto)
  THEN  (RWW  "rsin-rminus  rsin-halfpi"  (-1)  THENA  Auto))




Home Index