Nuprl Lemma : cos-sin-equation-non-constant2
∀f,g:ℝ ⟶ ℝ.
  ((∀x,y:ℝ.  ((x = y) ⇒ (f(x) = f(y))))
  ⇒ (∀x,y:ℝ.  ((x = y) ⇒ (g(x) = g(y))))
  ⇒ (∃u,v:ℝ. f(u) ≠ f(v))
  ⇒ (∀x,y:ℝ.  (f(x - y) = ((f(x) * f(y)) + (g(x) * g(y)))))
  ⇒ (∃I:Interval. (iproper(I) ∧ (r0 ∈ I) ∧ (∃g':I ⟶ℝ. d(g(x))/dx = λx.g' x on I)))
  ⇒ (∃a:ℝ. ((∀x:ℝ. (f(x) = rcos(a * x))) ∧ (∀x:ℝ. (g(x) = rsin(a * x))))))
Proof
Definitions occuring in Statement : 
rfun-ap: f(x), 
rcos: rcos(x), 
rsin: rsin(x), 
derivative: d(f[x])/dx = λz.g[z] on I, 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
iproper: iproper(I), 
interval: Interval, 
rneq: x ≠ y, 
rsub: x - y, 
req: x = y, 
rmul: a * b, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
top: Top, 
accelerate: accelerate(k;f), 
approx-arg: approx-arg(f;B;x), 
rsin: rsin(x), 
guard: {T}, 
r-ap: f(x), 
rfun-eq: rfun-eq(I;f;g), 
uiff: uiff(P;Q), 
or: P ∨ Q, 
uimplies: b supposing a, 
stable: Stable{P}, 
false: False, 
not: ¬A, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
label: ...$L... t, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rfun: I ⟶ℝ, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
rcos0, 
req_transitivity, 
rmul-identity1, 
rmul-zero, 
subinterval-riiint, 
derivative_functionality_wrt_subinterval, 
rmul_comm, 
derivative-id, 
derivative-const-mul, 
rmul-one, 
derivative-rsin, 
iproper-riiint, 
true_wf, 
subtype_rel_dep_function, 
member_riiint_lemma, 
top_wf, 
riiint_wf, 
simple-chain-rule, 
derivative_functionality, 
derivative_unique, 
set_wf, 
rsin_functionality, 
rmul_functionality, 
rcos_functionality, 
req_weakening, 
req_functionality, 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
not_wf, 
or_wf, 
false_wf, 
stable_req, 
stable__all, 
stable__and, 
rneq_wf, 
radd_wf, 
rsub_wf, 
subtype_rel_self, 
derivative_wf, 
rfun_wf, 
iproper_wf, 
interval_wf, 
exists_wf, 
rsin_wf, 
rmul_wf, 
rcos_wf, 
rfun-ap_wf, 
req_wf, 
real_wf, 
all_wf, 
i-member_wf, 
int-to-real_wf, 
cos-sin-equation-non-constant1
Rules used in proof : 
voidEquality, 
isect_memberEquality, 
allFunctionality, 
addLevel, 
unionElimination, 
independent_isectElimination, 
voidElimination, 
independent_pairFormation, 
functionEquality, 
setEquality, 
rename, 
setElimination, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
productEquality, 
natural_numberEquality, 
isectElimination, 
dependent_set_memberEquality, 
applyEquality, 
dependent_pairFormation, 
productElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}f,g:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f(x)  =  f(y))))
    {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (g(x)  =  g(y))))
    {}\mRightarrow{}  (\mexists{}u,v:\mBbbR{}.  f(u)  \mneq{}  f(v))
    {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.    (f(x  -  y)  =  ((f(x)  *  f(y))  +  (g(x)  *  g(y)))))
    {}\mRightarrow{}  (\mexists{}I:Interval.  (iproper(I)  \mwedge{}  (r0  \mmember{}  I)  \mwedge{}  (\mexists{}g':I  {}\mrightarrow{}\mBbbR{}.  d(g(x))/dx  =  \mlambda{}x.g'  x  on  I)))
    {}\mRightarrow{}  (\mexists{}a:\mBbbR{}.  ((\mforall{}x:\mBbbR{}.  (f(x)  =  rcos(a  *  x)))  \mwedge{}  (\mforall{}x:\mBbbR{}.  (g(x)  =  rsin(a  *  x))))))
Date html generated:
2018_05_22-PM-03_11_20
Last ObjectModification:
2018_05_20-PM-11_54_53
Theory : reals_2
Home
Index