Nuprl Lemma : absval_elim
∀[P:ℤ ⟶ ℙ]. (∀x:ℤ. P[|x|] ⇐⇒ ∀x:ℕ. P[x])
Proof
Definitions occuring in Statement : 
absval: |i|, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
so_apply: x[s], 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
sq_stable: SqStable(P), 
le: A ≤ B
Lemmas referenced : 
nat_wf, 
all_wf, 
absval_wf, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
uiff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
sq_stable_from_decidable, 
le_wf, 
decidable__le, 
not-lt-2, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel-alt
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
dependent_functionElimination, 
minusEquality, 
natural_numberEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
lessCases, 
axiomSqEquality, 
Error :inhabitedIsType, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  (\mforall{}x:\mBbbZ{}.  P[|x|]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:\mBbbN{}.  P[x])
Date html generated:
2019_06_20-AM-11_24_35
Last ObjectModification:
2018_09_26-AM-10_58_23
Theory : arithmetic
Home
Index