Nuprl Lemma : mod2-is-one

x:ℤ((x mod 2) 1 ∈ ℤ ⇐⇒ ∃n:ℤ(x ((2 n) 1) ∈ ℤ))


Proof




Definitions occuring in Statement :  modulus: mod n all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] decidable: Dec(P) exists: x:A. B[x] bfalse: ff btrue: tt ifthenelse: if then else fi  or: P ∨ Q less_than': less_than'(a;b) le: A ≤ B uiff: uiff(P;Q) top: Top subtract: m rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B prop: false: False guard: {T} sq_type: SQType(T) uimplies: supposing a implies:  Q not: ¬A nequal: a ≠ b ∈  true: True int_nzero: -o uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  iff_wf mod2-is-zero exists_wf minus-minus mul-associates minus-add not-equal-2 false_wf decidable__int_equal assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf bool_cases le-add-cancel add-zero add_functionality_wrt_le minus-one-mul-top minus-one-mul condition-implies-le le_antisymmetry_iff not_wf bnot_wf assert_wf zero-add add-commutes add-swap add-associates nequal_wf true_wf equal-wf-base int_subtype_base subtype_base_sq modulus_wf eq_int_wf subtract_wf mod2-add1
Rules used in proof :  promote_hyp multiplyEquality dependent_pairFormation impliesFunctionality unionElimination productElimination addEquality minusEquality voidEquality isect_memberEquality lambdaEquality closedConclusion baseApply independent_pairFormation sqequalRule because_Cache applyEquality baseClosed voidElimination independent_functionElimination equalitySymmetry equalityTransitivity independent_isectElimination cumulativity instantiate addLevel dependent_set_memberEquality hypothesis natural_numberEquality hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction intEquality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}x:\mBbbZ{}.  ((x  mod  2)  =  1  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbZ{}.  (x  =  ((2  *  n)  +  1)))



Date html generated: 2018_07_25-PM-01_27_57
Last ObjectModification: 2018_06_27-PM-05_54_42

Theory : arithmetic


Home Index