Nuprl Lemma : seq-append_wf_consistent

T:Type. ∀R:n:ℕ ⟶ (ℕn ⟶ T) ⟶ T ⟶ ℙ. ∀n:ℕ. ∀s:R-consistent-seq(n). ∀t:T.
  ((R t)  (seq-append(n;1;s;λi.t) ∈ R-consistent-seq(n 1)))


Proof




Definitions occuring in Statement :  consistent-seq: R-consistent-seq(n) seq-append: seq-append(n;m;s1;s2) int_seg: {i..j-} nat: prop: all: x:A. B[x] implies:  Q member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T consistent-seq: R-consistent-seq(n) uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q seq-append: seq-append(n;m;s1;s2) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b top: Top true: True squash: T bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) subtract: m
Lemmas referenced :  seq-append_wf false_wf le_wf int_seg_wf all_wf nat_wf int_seg_subtype_nat subtype_rel_dep_function subtype_rel_sets and_wf less_than_wf less_than_transitivity2 le_weakening2 consistent-seq_wf decidable__int_equal lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot sq_stable__le subtype_rel_self subtype_rel_wf not-lt-2 less-iff-le le_antisymmetry_iff add_functionality_wrt_le add-associates add-swap add-commutes le-add-cancel condition-implies-le minus-add minus-one-mul minus-one-mul-top zero-add le-add-cancel2 not-equal-2 decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality introduction extract_by_obid isectElimination cumulativity hypothesisEquality natural_numberEquality sqequalRule independent_pairFormation hypothesis functionExtensionality applyEquality lambdaEquality because_Cache addEquality independent_isectElimination intEquality setEquality productElimination dependent_functionElimination functionEquality universeEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry lessCases isect_memberFormation sqequalAxiom isect_memberEquality voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp instantiate impliesFunctionality addLevel hyp_replacement levelHypothesis applyLambdaEquality minusEquality

Latex:
\mforall{}T:Type.  \mforall{}R:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}n:\mBbbN{}.  \mforall{}s:R-consistent-seq(n).  \mforall{}t:T.
    ((R  n  s  t)  {}\mRightarrow{}  (seq-append(n;1;s;\mlambda{}i.t)  \mmember{}  R-consistent-seq(n  +  1)))



Date html generated: 2017_04_14-AM-07_26_31
Last ObjectModification: 2017_02_27-PM-02_56_00

Theory : bar-induction


Home Index