Nuprl Lemma : bdd-all-btrue
∀[n:ℕ]. (bdd-all(n;x.tt) ~ tt)
Proof
Definitions occuring in Statement : 
bdd-all: bdd-all(n;i.P[i]), 
nat: ℕ, 
btrue: tt, 
uall: ∀[x:A]. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
bdd-all: bdd-all(n;i.P[i]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
all: ∀x:A. B[x], 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
istype-void, 
decidable__le, 
subtract_wf, 
istype-false, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
applyEquality, 
intEquality, 
minusEquality, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
equalityElimination, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[n:\mBbbN{}].  (bdd-all(n;x.tt)  \msim{}  tt)
Date html generated:
2019_06_20-PM-01_04_56
Last ObjectModification:
2019_06_20-PM-01_00_25
Theory : bool_1
Home
Index