Nuprl Lemma : integer-induction
∀[P:ℤ ⟶ ℙ]. (P[0] ⇒ (∀y:{x:ℤ| 0 < x} . (P[y - 1] ⇒ P[y])) ⇒ (∀y:{x:ℤ| x < 0} . (P[y + 1] ⇒ P[y])) ⇒ (∀x:ℤ. P[x]))
Proof
Definitions occuring in Statement : 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
top: Top, 
subtract: n - m, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
le: A ≤ B, 
decidable: Dec(P), 
gt: i > j
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
all_wf, 
subtract_wf, 
primrec-wf2, 
nat_wf, 
int_subtype_base, 
minus-zero, 
minus-one-mul, 
subtype_rel-equal, 
add-commutes, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
le_weakening2, 
le_wf, 
less-iff-le, 
add_functionality_wrt_le, 
le_reflexive, 
add-associates, 
zero-add, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
add-zero, 
not-lt-2, 
mul-associates, 
omega-shadow, 
false_wf, 
add-swap, 
decidable__lt, 
subtype_rel_dep_function, 
subtype_rel_self, 
not-gt-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
independent_pairFormation, 
impliesFunctionality, 
intEquality, 
setEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
addEquality, 
setElimination, 
universeEquality, 
minusEquality, 
dependent_set_memberEquality, 
isect_memberEquality, 
voidEquality, 
addLevel, 
multiplyEquality, 
levelHypothesis, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}]
    (P[0]
    {}\mRightarrow{}  (\mforall{}y:\{x:\mBbbZ{}|  0  <  x\}  .  (P[y  -  1]  {}\mRightarrow{}  P[y]))
    {}\mRightarrow{}  (\mforall{}y:\{x:\mBbbZ{}|  x  <  0\}  .  (P[y  +  1]  {}\mRightarrow{}  P[y]))
    {}\mRightarrow{}  (\mforall{}x:\mBbbZ{}.  P[x]))
Date html generated:
2017_04_14-AM-07_25_52
Last ObjectModification:
2017_02_27-PM-02_55_36
Theory : call!by!value_2
Home
Index