Nuprl Lemma : integer-induction

[P:ℤ ⟶ ℙ]. (P[0]  (∀y:{x:ℤ0 < x} (P[y 1]  P[y]))  (∀y:{x:ℤx < 0} (P[y 1]  P[y]))  (∀x:ℤP[x]))


Proof




Definitions occuring in Statement :  less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False iff: ⇐⇒ Q not: ¬A rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B top: Top subtract: m nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True le: A ≤ B decidable: Dec(P) gt: i > j
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot all_wf subtract_wf primrec-wf2 nat_wf int_subtype_base minus-zero minus-one-mul subtype_rel-equal add-commutes minus-one-mul-top minus-add minus-minus le_weakening2 le_wf less-iff-le add_functionality_wrt_le le_reflexive add-associates zero-add one-mul add-mul-special two-mul mul-distributes-right zero-mul add-zero not-lt-2 mul-associates omega-shadow false_wf add-swap decidable__lt subtype_rel_dep_function subtype_rel_self not-gt-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination independent_pairFormation impliesFunctionality intEquality setEquality lambdaEquality functionEquality applyEquality functionExtensionality addEquality setElimination universeEquality minusEquality dependent_set_memberEquality isect_memberEquality voidEquality addLevel multiplyEquality levelHypothesis imageMemberEquality baseClosed

Latex:
\mforall{}[P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}]
    (P[0]
    {}\mRightarrow{}  (\mforall{}y:\{x:\mBbbZ{}|  0  <  x\}  .  (P[y  -  1]  {}\mRightarrow{}  P[y]))
    {}\mRightarrow{}  (\mforall{}y:\{x:\mBbbZ{}|  x  <  0\}  .  (P[y  +  1]  {}\mRightarrow{}  P[y]))
    {}\mRightarrow{}  (\mforall{}x:\mBbbZ{}.  P[x]))



Date html generated: 2017_04_14-AM-07_25_52
Last ObjectModification: 2017_02_27-PM-02_55_36

Theory : call!by!value_2


Home Index