Nuprl Lemma : strat2play-invariant

g:SimpleGame. ∀n:ℕ. ∀s:win2strat(g;n). ∀moves:strat2play(g;n;s). ∀i:ℕ(2 n) 1.
  ((((i mod 2) 0 ∈ ℤ (↓Legal1(moves[i];moves[i 1])))
  ∧ (((i mod 2) 1 ∈ ℤ (↓Legal2(moves[i];moves[i 1]))))


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-item: moves[i] sg-legal2: Legal2(x;y) sg-legal1: Legal1(x;y) simple-game: SimpleGame modulus: mod n int_seg: {i..j-} nat: all: x:A. B[x] squash: T implies:  Q and: P ∧ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] nat: int_seg: {i..j-} int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top lelt: i ≤ j < k less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  strat2play-invariant-1 int_seg_wf strat2play_wf win2strat_wf istype-nat simple-game_wf div_rem_sum subtype_base_sq int_subtype_base istype-int nequal_wf rem_bounds_1 int_seg_subtype_nat istype-false nat_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than div_bounds_1 int_seg_properties intformand_wf itermVar_wf itermAdd_wf intformle_wf intformeq_wf itermMultiply_wf int_formula_prop_and_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma istype-le modulus-is-rem set_subtype_base lelt_wf decidable__equal_int decidable__le
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination Error :universeIsType,  isectElimination natural_numberEquality addEquality multiplyEquality setElimination rename Error :dependent_set_memberEquality_alt,  instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination Error :equalityIstype,  baseClosed sqequalBase applyEquality sqequalRule independent_pairFormation unionElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  because_Cache divideEquality closedConclusion Error :inhabitedIsType,  imageElimination int_eqEquality Error :productIsType,  baseApply imageMemberEquality

Latex:
\mforall{}g:SimpleGame.  \mforall{}n:\mBbbN{}.  \mforall{}s:win2strat(g;n).  \mforall{}moves:strat2play(g;n;s).  \mforall{}i:\mBbbN{}(2  *  n)  +  1.
    ((((i  mod  2)  =  0)  {}\mRightarrow{}  (\mdownarrow{}Legal1(moves[i];moves[i  +  1])))
    \mwedge{}  (((i  mod  2)  =  1)  {}\mRightarrow{}  (\mdownarrow{}Legal2(moves[i];moves[i  +  1]))))



Date html generated: 2019_06_20-PM-00_52_25
Last ObjectModification: 2019_01_02-PM-03_30_36

Theory : co-recursion-2


Home Index