Nuprl Lemma : vdf-eq-implies2

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. ∀[L:(a:A × b:B × C[a;b]) List].
  (vdf-eq(A;f;L)  {∀[i:ℕ||L||]. ((fst(L[i])) (f firstn(i;L) (fst(snd(L[i])))) ∈ A)})


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) firstn: firstn(n;as) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] guard: {T} so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) implies:  Q apply: a function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q so_apply: x[s1;s2] subtype_rel: A ⊆B very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) so_lambda: λ2y.t[x; y] uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: guard: {T}
Lemmas referenced :  vdf-eq-implies length_wf_nat length_wf istype-int vdf_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf vdf-eq_wf list_wf very-dep-fun_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt productEquality applyEquality sqequalRule lambdaEquality_alt equalityTransitivity equalitySymmetry isectIsType universeIsType independent_isectElimination dependent_functionElimination addEquality natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination functionIsType inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].  \mforall{}[L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List].
    (vdf-eq(A;f;L)  {}\mRightarrow{}  \{\mforall{}[i:\mBbbN{}||L||].  ((fst(L[i]))  =  (f  firstn(i;L)  (fst(snd(L[i])))))\})



Date html generated: 2020_05_19-PM-09_40_53
Last ObjectModification: 2020_03_06-PM-01_56_55

Theory : co-recursion-2


Home Index