Nuprl Lemma : vdf-eq-implies2
∀[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. ∀[L:(a:A × b:B × C[a;b]) List].
  (vdf-eq(A;f;L) ⇒ {∀[i:ℕ||L||]. ((fst(L[i])) = (f firstn(i;L) (fst(snd(L[i])))) ∈ A)})
Proof
Definitions occuring in Statement : 
very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]), 
vdf-eq: vdf-eq(A;f;L), 
firstn: firstn(n;as), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
so_apply: x[s1;s2], 
pi1: fst(t), 
pi2: snd(t), 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]), 
so_lambda: λ2x y.t[x; y], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
vdf-eq-implies, 
length_wf_nat, 
length_wf, 
istype-int, 
vdf_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
vdf-eq_wf, 
list_wf, 
very-dep-fun_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
productEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
isectIsType, 
universeIsType, 
independent_isectElimination, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
functionIsType, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].  \mforall{}[L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List].
    (vdf-eq(A;f;L)  {}\mRightarrow{}  \{\mforall{}[i:\mBbbN{}||L||].  ((fst(L[i]))  =  (f  firstn(i;L)  (fst(snd(L[i])))))\})
Date html generated:
2020_05_19-PM-09_40_53
Last ObjectModification:
2020_03_06-PM-01_56_55
Theory : co-recursion-2
Home
Index