Nuprl Lemma : vdf-eq_wf

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type].  ∀L:(a:A × b:B × C[a;b]) List. ∀[f:very-dep-fun(A;B;a,b.C[a;b])]. (vdf-eq(A;f;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) or: P ∨ Q nat: less_than: a < b squash: T and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtype_rel: A ⊆B very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) dep-all: dep-all(n;i.P[i]) less_than': less_than'(a;b) true: True
Lemmas referenced :  vdf-wf very-dep-fun_wf list_wf istype-universe decidable__lt length_wf subtract_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le vdf_wf itermAdd_wf int_term_value_add_lemma istype-top true_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt universeIsType sqequalRule lambdaEquality_alt applyEquality productEquality functionIsType inhabitedIsType instantiate universeEquality dependent_functionElimination natural_numberEquality unionElimination dependent_set_memberEquality_alt imageElimination productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination equalityTransitivity equalitySymmetry isectIsType addEquality because_Cache lessCases axiomSqEquality isect_memberEquality_alt isectIsTypeImplies imageMemberEquality baseClosed

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].
    \mforall{}L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List.  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].  (vdf-eq(A;f;L)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_19-PM-09_40_30
Last ObjectModification: 2020_03_05-AM-11_17_05

Theory : co-recursion-2


Home Index