Nuprl Lemma : copath-last_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)].
  copath-last(w;p) ∈ w':coW(A;a.B[a]) × coW-dom(a.B[a];w') supposing 0 < copath-length(p)
Proof
Definitions occuring in Statement : 
copath-last: copath-last(w;p)
, 
copath-length: copath-length(p)
, 
copath: copath(a.B[a];w)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T 
, 
copath: copath(a.B[a];w)
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
copath-last: copath-last(w;p)
, 
true: True
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
guard: {T}
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW_wf, 
le_reflexive, 
le-add-cancel-alt, 
not-le-2, 
le-add-cancel2, 
not-equal-2, 
not-lt-2, 
decidable__lt, 
length-copath-tl, 
copath-tl_wf, 
coW-item_wf, 
nat_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
coW-dom_wf, 
copath-hd_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
copath_wf, 
copath-length_wf, 
le_wf, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties
Rules used in proof : 
universeEquality, 
functionEquality, 
independent_pairEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
dependent_pairEquality, 
equalityElimination, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
addEquality, 
independent_pairFormation, 
unionElimination, 
productElimination, 
because_Cache, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
lambdaEquality, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].
    copath-last(w;p)  \mmember{}  w':coW(A;a.B[a])  \mtimes{}  coW-dom(a.B[a];w')  supposing  0  <  copath-length(p)
Date html generated:
2018_07_25-PM-01_40_35
Last ObjectModification:
2018_07_24-AM-09_42_16
Theory : co-recursion
Home
Index