Nuprl Lemma : copath-last_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)].
  copath-last(w;p) ∈ w':coW(A;a.B[a]) × coW-dom(a.B[a];w') supposing 0 < copath-length(p)


Proof




Definitions occuring in Statement :  copath-last: copath-last(w;p) copath-length: copath-length(p) copath: copath(a.B[a];w) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  nequal: a ≠ b ∈  copath: copath(a.B[a];w) assert: b bnot: ¬bb sq_type: SQType(T) exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 copath-last: copath-last(w;p) true: True less_than': less_than'(a;b) top: Top subtract: m uiff: uiff(P;Q) rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) and: P ∧ Q le: A ≤ B subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] prop: guard: {T} ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf le_reflexive le-add-cancel-alt not-le-2 le-add-cancel2 not-equal-2 not-lt-2 decidable__lt length-copath-tl copath-tl_wf coW-item_wf nat_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert coW-dom_wf copath-hd_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le copath_wf copath-length_wf le_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  universeEquality functionEquality independent_pairEquality cumulativity instantiate promote_hyp dependent_pairFormation dependent_pairEquality equalityElimination minusEquality intEquality voidEquality isect_memberEquality addEquality independent_pairFormation unionElimination productElimination because_Cache applyEquality equalitySymmetry equalityTransitivity axiomEquality dependent_functionElimination lambdaEquality voidElimination independent_functionElimination independent_isectElimination natural_numberEquality intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].
    copath-last(w;p)  \mmember{}  w':coW(A;a.B[a])  \mtimes{}  coW-dom(a.B[a];w')  supposing  0  <  copath-length(p)



Date html generated: 2018_07_25-PM-01_40_35
Last ObjectModification: 2018_07_24-AM-09_42_16

Theory : co-recursion


Home Index