Nuprl Lemma : fix_wf_mutual-corec-partial1
∀[A:Type]
  (∀[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type].
     ∀[f:⋂T:ℕk ⟶ Type. ((i:ℕk ⟶ (T i) ⟶ partial(A)) ⟶ i:ℕk ⟶ (F[T] i) ⟶ partial(A))]
       (fix(f) ∈ i:ℕk ⟶ m-corec(T.F[T];i) ⟶ partial(A)) 
     supposing k-Monotone(T.F[T])
     ∧ (∀i,j:ℕk. ∀Z:ℕk ⟶ Type.  Continuous(X.F[λi.if (i =z j) then X else Z i fi ] i))) supposing 
     (mono(A) and 
     value-type(A))
Proof
Definitions occuring in Statement : 
m-corec: m-corec(T.F[T];i)
, 
k-monotone: k-Monotone(T.F[T])
, 
partial: partial(T)
, 
mono: mono(T)
, 
type-continuous: Continuous(T.F[T])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
value-type: value-type(T)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
lambda: λx.A[x]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
k-ext: A ≡ B
, 
k-subtype: A ⊆ B
, 
m-corec: m-corec(T.F[T];i)
Lemmas referenced : 
fix-mutual-corec-partial1, 
int_seg_wf, 
mutual-corec-ext2, 
partial_wf, 
k-monotone_wf, 
all_wf, 
type-continuous_wf, 
eq_int_wf, 
bool_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_wf, 
mono_wf, 
value-type_wf, 
mutual-corec_wf, 
subtype_rel_dep_function, 
m-corec_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
cumulativity, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
isect_memberEquality, 
productEquality, 
instantiate, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[A:Type]
    (\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].
          \mforall{}[f:\mcap{}T:\mBbbN{}k  {}\mrightarrow{}  Type.  ((i:\mBbbN{}k  {}\mrightarrow{}  (T  i)  {}\mrightarrow{}  partial(A))  {}\mrightarrow{}  i:\mBbbN{}k  {}\mrightarrow{}  (F[T]  i)  {}\mrightarrow{}  partial(A))]
              (fix(f)  \mmember{}  i:\mBbbN{}k  {}\mrightarrow{}  m-corec(T.F[T];i)  {}\mrightarrow{}  partial(A)) 
          supposing  k-Monotone(T.F[T])
          \mwedge{}  (\mforall{}i,j:\mBbbN{}k.  \mforall{}Z:\mBbbN{}k  {}\mrightarrow{}  Type.    Continuous(X.F[\mlambda{}i.if  (i  =\msubz{}  j)  then  X  else  Z  i  fi  ]  i)))  supposing 
          (mono(A)  and 
          value-type(A))
Date html generated:
2018_05_21-PM-00_18_15
Last ObjectModification:
2017_10_18-PM-02_48_02
Theory : co-recursion
Home
Index