Nuprl Lemma : pW-sup_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[par:P]. ∀[a:A[par]].
[f:b:B[par;a] ⟶ (pW C[par;a;b])].
  (pW-sup(a;f) ∈ pW par)


Proof




Definitions occuring in Statement :  pW-sup: pW-sup(a;f) param-W: pW uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pW-sup: pW-sup(a;f) subtype_rel: A ⊆B param-W: pW all: x:A. B[x] implies:  Q pcw-path: Path nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: exists: x:A. B[x] ext-family: F ≡ G guard: {T} uimplies: supposing a squash: T pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) pcw-step-agree: StepAgree(s;p1;w) spreadn: spread3 ext-eq: A ≡ B pi1: fst(t) pi2: snd(t) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) sq_stable: SqStable(P) subtract: m top: Top true: True pcw-steprel: StepRel(s1;s2) label: ...$L... t istype: istype(T) pcw-partial: pcw-partial(path;n) pcw-pp-barred: Barred(pp) isr: isr(x) assert: b ifthenelse: if then else fi  btrue: tt cand: c∧ B less_than: a < b
Lemmas referenced :  param-co-W_wf param-W_wf istype-universe pcw-path_wf pcw-step-agree_wf istype-false le_wf squash_wf exists_wf nat_wf pcw-pp-barred_wf pcw-partial_wf param-co-W-ext ext-eq_inversion subtype_rel_weakening equal_functionality_wrt_subtype_rel2 subtype_rel-equal pcw-path-shift pcw-steprel_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-add istype-void istype-int minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel equal_wf true_wf subtype_rel_dep_function iff_weakening_equal subtype_rel_self subtype_rel_wf decidable__lt not-lt-2 less-iff-le general_arith_equation1 less_than_wf assert_wf bfalse_wf btrue_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  applyEquality Error :lambdaEquality_alt,  Error :inhabitedIsType,  because_Cache Error :isect_memberEquality_alt,  universeEquality Error :dependent_pairEquality_alt,  Error :functionExtensionality_alt,  setElimination rename Error :setIsType,  Error :dependent_set_memberEquality_alt,  natural_numberEquality independent_pairFormation Error :lambdaFormation_alt,  dependent_functionElimination productEquality functionEquality independent_isectElimination imageElimination imageMemberEquality baseClosed productElimination hypothesis_subsumption Error :equalityIsType1,  independent_functionElimination unionElimination applyLambdaEquality addEquality voidElimination minusEquality hyp_replacement Error :productIsType,  promote_hyp instantiate Error :dependent_pairFormation_alt

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].  \mforall{}[par:P].
\mforall{}[a:A[par]].  \mforall{}[f:b:B[par;a]  {}\mrightarrow{}  (pW  C[par;a;b])].
    (pW-sup(a;f)  \mmember{}  pW  par)



Date html generated: 2019_06_20-PM-00_35_45
Last ObjectModification: 2018_10_06-AM-11_20_33

Theory : co-recursion


Home Index