Nuprl Lemma : KleeneM_wf
∀[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]. ∀[F:(ℕ ⟶ T) ⟶ ℕ]. ∀[f:ℕ ⟶ T].
  (KleeneM(F;f) ∈ ⇃({m:ℕ+| ∀g:ℕ ⟶ T. ((g = f ∈ (ℕm ⟶ T)) 
⇒ ((F g) = (F f) ∈ ℤ))} ))
Proof
Definitions occuring in Statement : 
KleeneM: KleeneM(F;f)
, 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
KleeneM: KleeneM(F;f)
, 
and: P ∧ Q
, 
prop: ℙ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
false: False
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
KleeneSearch_wf, 
subtype_rel_wf, 
nat_wf, 
squash_wf, 
Kleene-M_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
quotient_subtype_quotient, 
subtype_rel_sets, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
int_seg_wf, 
subtype_rel_function, 
int_seg_subtype_nat, 
subtype_rel_self, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
istype-nat, 
equiv_rel_true, 
true_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
extract_by_obid, 
isectElimination, 
Error :dependent_set_memberEquality_alt, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
Error :productIsType, 
Error :universeIsType, 
because_Cache, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
Error :functionIsType, 
Error :inhabitedIsType, 
intEquality, 
sqequalBase, 
equalitySymmetry, 
Error :setIsType, 
axiomEquality, 
equalityTransitivity, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].
    (KleeneM(F;f)  \mmember{}  \00D9(\{m:\mBbbN{}\msupplus{}|  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  T.  ((g  =  f)  {}\mRightarrow{}  ((F  g)  =  (F  f)))\}  ))
Date html generated:
2019_06_20-PM-02_51_12
Last ObjectModification:
2019_02_11-AM-11_26_26
Theory : continuity
Home
Index