Nuprl Lemma : KleeneM_wf

[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]. ∀[F:(ℕ ⟶ T) ⟶ ℕ]. ∀[f:ℕ ⟶ T].
  (KleeneM(F;f) ∈ ⇃({m:ℕ+| ∀g:ℕ ⟶ T. ((g f ∈ (ℕm ⟶ T))  ((F g) (F f) ∈ ℤ))} ))


Proof




Definitions occuring in Statement :  KleeneM: KleeneM(F;f) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat_plus: + nat: subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] squash: T implies:  Q and: P ∧ Q true: True member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T KleeneM: KleeneM(F;f) and: P ∧ Q prop: nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + cand: c∧ B le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) less_than': less_than'(a;b) true: True
Lemmas referenced :  KleeneSearch_wf subtype_rel_wf nat_wf squash_wf Kleene-M_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le quotient_subtype_quotient subtype_rel_sets decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel int_seg_wf subtype_rel_function int_seg_subtype_nat subtype_rel_self set_subtype_base le_wf int_subtype_base istype-nat equiv_rel_true true_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut setElimination thin rename sqequalRule sqequalHypSubstitution productElimination extract_by_obid isectElimination Error :dependent_set_memberEquality_alt,  hypothesisEquality independent_pairFormation hypothesis Error :productIsType,  Error :universeIsType,  because_Cache natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  voidElimination applyEquality Error :lambdaFormation_alt,  Error :equalityIstype,  Error :functionIsType,  Error :inhabitedIsType,  intEquality sqequalBase equalitySymmetry Error :setIsType,  axiomEquality equalityTransitivity Error :isectIsTypeImplies,  instantiate universeEquality

Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].
    (KleeneM(F;f)  \mmember{}  \00D9(\{m:\mBbbN{}\msupplus{}|  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  T.  ((g  =  f)  {}\mRightarrow{}  ((F  g)  =  (F  f)))\}  ))



Date html generated: 2019_06_20-PM-02_51_12
Last ObjectModification: 2019_02_11-AM-11_26_26

Theory : continuity


Home Index