Nuprl Lemma : baire-diff-from_wf

[a:ℕ ⟶ ℕ]. ∀[k:ℕ].  (baire-diff-from(a;k) ∈ ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  baire-diff-from: baire-diff-from(a;k) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} prop: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] nat: baire-diff-from: baire-diff-from(a;k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert equal_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties le_wf false_wf add_nat_wf nat-pred_wf nat_wf assert_of_le_int eqtt_to_assert bool_wf le_int_wf
Rules used in proof :  functionEquality axiomEquality cumulativity instantiate promote_hyp independent_functionElimination computeAll voidEquality voidElimination isect_memberEquality intEquality dependent_pairFormation dependent_functionElimination applyLambdaEquality equalitySymmetry equalityTransitivity independent_pairFormation natural_numberEquality addEquality dependent_set_memberEquality hypothesisEquality functionExtensionality applyEquality int_eqEquality independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].    (baire-diff-from(a;k)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2017_04_21-AM-11_23_36
Last ObjectModification: 2017_04_20-PM-05_45_53

Theory : continuity


Home Index