Nuprl Lemma : ccc-nset-remove1
∀K:Type. (CCCNSet(K) 
⇒ (∀k0,k1:K.  ((¬(k0 = k1 ∈ ℤ)) 
⇒ CCCNSet({k:K| ¬(k = k0 ∈ ℤ)} ))))
Proof
Definitions occuring in Statement : 
ccc-nset: CCCNSet(K)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
bfalse: ff
, 
ge: i ≥ j 
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
contra-cc: CCC(T)
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
ccc-nset: CCCNSet(K)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
nat_properties, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
istype-universe, 
ccc-nset_wf, 
subtype_rel_self, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformnot_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
subtype_rel_transitivity, 
istype-nat, 
equal_wf, 
not_wf, 
nat_wf, 
subtype_rel_set
Rules used in proof : 
cumulativity, 
promote_hyp, 
equalityElimination, 
unionElimination, 
functionEquality, 
universeEquality, 
instantiate, 
Error :productIsType, 
Error :functionIsType, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
Error :equalityIstype, 
Error :universeIsType, 
voidElimination, 
Error :isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
Error :dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
Error :inhabitedIsType, 
independent_isectElimination, 
rename, 
setElimination, 
applyEquality, 
intEquality, 
Error :lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mforall{}k0,k1:K.    ((\mneg{}(k0  =  k1))  {}\mRightarrow{}  CCCNSet(\{k:K|  \mneg{}(k  =  k0)\}  ))))
Date html generated:
2019_06_20-PM-03_01_45
Last ObjectModification:
2019_06_13-PM-00_16_15
Theory : continuity
Home
Index