Nuprl Lemma : ccc-nset-remove1

K:Type. (CCCNSet(K)  (∀k0,k1:K.  ((¬(k0 k1 ∈ ℤ))  CCCNSet({k:K| ¬(k k0 ∈ ℤ)} ))))


Proof




Definitions occuring in Statement :  ccc-nset: CCCNSet(K) all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q bfalse: ff ge: i ≥  uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 contra-cc: CCC(T) prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A cand: c∧ B so_apply: x[s] uimplies: supposing a nat: guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q ccc-nset: CCCNSet(K) implies:  Q all: x:A. B[x]
Lemmas referenced :  neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert nat_properties assert_of_eq_int eqtt_to_assert eq_int_wf istype-universe ccc-nset_wf subtype_rel_self int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_and_lemma istype-int intformnot_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat subtype_rel_transitivity istype-nat equal_wf not_wf nat_wf subtype_rel_set
Rules used in proof :  cumulativity promote_hyp equalityElimination unionElimination functionEquality universeEquality instantiate Error :productIsType,  Error :functionIsType,  Error :dependent_set_memberEquality_alt,  because_Cache Error :equalityIstype,  Error :universeIsType,  voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination int_eqEquality Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation natural_numberEquality equalitySymmetry equalityTransitivity Error :inhabitedIsType,  independent_isectElimination rename setElimination applyEquality intEquality Error :lambdaEquality_alt,  sqequalRule hypothesis hypothesisEquality isectElimination extract_by_obid introduction cut independent_pairFormation thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mforall{}k0,k1:K.    ((\mneg{}(k0  =  k1))  {}\mRightarrow{}  CCCNSet(\{k:K|  \mneg{}(k  =  k0)\}  ))))



Date html generated: 2019_06_20-PM-03_01_45
Last ObjectModification: 2019_06_13-PM-00_16_15

Theory : continuity


Home Index