Nuprl Lemma : eq-upto-baire-diff-from
∀[a:ℕ ⟶ ℕ]. ∀[n:ℕ].  (a = baire-diff-from(a;n) ∈ (ℕn ⟶ ℕ))
Proof
Definitions occuring in Statement : 
baire-diff-from: baire-diff-from(a;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
guard: {T}
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
baire-diff-from: baire-diff-from(a;k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_seg_wf, 
false_wf, 
int_seg_subtype_nat, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
le_wf, 
nat-pred_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_wf, 
decidable__equal_int, 
nat_properties, 
int_seg_properties, 
assert_of_le_int, 
eqtt_to_assert, 
bool_wf, 
le_int_wf
Rules used in proof : 
functionEquality, 
axiomEquality, 
independent_functionElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_set_memberEquality, 
addEquality, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
applyEquality, 
dependent_functionElimination, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
functionExtensionality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[n:\mBbbN{}].    (a  =  baire-diff-from(a;n))
Date html generated:
2017_04_21-AM-11_23_43
Last ObjectModification:
2017_04_20-PM-05_47_19
Theory : continuity
Home
Index