Nuprl Lemma : eq-upto-baire-diff-from

[a:ℕ ⟶ ℕ]. ∀[n:ℕ].  (a baire-diff-from(a;n) ∈ (ℕn ⟶ ℕ))


Proof




Definitions occuring in Statement :  baire-diff-from: baire-diff-from(a;k) int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  less_than': less_than'(a;b) le: A ≤ B assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff or: P ∨ Q decidable: Dec(P) subtype_rel: A ⊆B prop: top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k ge: i ≥  guard: {T} ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] int_seg: {i..j-} nat: baire-diff-from: baire-diff-from(a;k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_seg_wf false_wf int_seg_subtype_nat assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert le_wf nat-pred_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_wf decidable__equal_int nat_properties int_seg_properties assert_of_le_int eqtt_to_assert bool_wf le_int_wf
Rules used in proof :  functionEquality axiomEquality independent_functionElimination cumulativity instantiate promote_hyp dependent_set_memberEquality addEquality computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation applyEquality dependent_functionElimination natural_numberEquality because_Cache independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination lambdaFormation hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule functionExtensionality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[n:\mBbbN{}].    (a  =  baire-diff-from(a;n))



Date html generated: 2017_04_21-AM-11_23_43
Last ObjectModification: 2017_04_20-PM-05_47_19

Theory : continuity


Home Index