Nuprl Lemma : nat-pred-as-sub

n:ℕ(0 <  (n-1 (n 1) ∈ ℕ))


Proof




Definitions occuring in Statement :  nat-pred: n-1 nat: less_than: a < b all: x:A. B[x] implies:  Q subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  int_upper: {i...} nequal: a ≠ b ∈  assert: b ifthenelse: if then else fi  bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff less_than': less_than'(a;b) le: A ≤ B prop: top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 nat: uall: [x:A]. B[x] member: t ∈ T nat-pred: n-1 implies:  Q all: x:A. B[x]
Lemmas referenced :  nat_wf less_than_wf int_formula_prop_le_lemma intformle_wf decidable__le int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf int_upper_properties zero-add nequal-le-implies int_upper_subtype_nat neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert le_wf false_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt subtract_wf decidable__equal_int nat_properties assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf
Rules used in proof :  hypothesis_subsumption int_eqReduceFalseSq independent_functionElimination cumulativity instantiate promote_hyp dependent_set_memberEquality computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation dependent_functionElimination hypothesisEquality int_eqReduceTrueSq sqequalRule independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination natural_numberEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  (0  <  n  {}\mRightarrow{}  (n-1  =  (n  -  1)))



Date html generated: 2017_04_21-AM-11_21_48
Last ObjectModification: 2017_04_20-PM-03_50_09

Theory : continuity


Home Index