Nuprl Lemma : unbounded-ccc-nset-decidable

K:Type. (CCCNSet(K)  (∀B:ℕ. ∃k:K. B < k)  (∀l:ℕ((l ∈ K) ∨ (l ∈ K)))))


Proof




Definitions occuring in Statement :  ccc-nset: CCCNSet(K) nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q member: t ∈ T universe: Type
Definitions unfolded in proof :  false: False so_apply: x[s] so_lambda: λ2x.t[x] not: ¬A lelt: i ≤ j < k int_seg: {i..j-} or: P ∨ Q decidable: Dec(P) prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B nat: uall: [x:A]. B[x] weakly-decidable-nset: WD(K) exists: x:A. B[x] and: P ∧ Q ccc-nset: CCCNSet(K) implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  int_subtype_base istype-int le_wf set_subtype_base istype-le decidable__le istype-universe ccc-nset_wf nat_wf subtype_rel_transitivity istype-less_than istype-nat ccc-nset-minimum ccc-nset-weakly-decidable
Rules used in proof :  voidElimination equalityTransitivity equalitySymmetry sqequalBase natural_numberEquality Error :equalityIstype,  Error :inrFormation_alt,  independent_pairFormation Error :dependent_set_memberEquality_alt,  unionElimination universeEquality instantiate independent_isectElimination intEquality Error :inhabitedIsType,  Error :lambdaEquality_alt,  applyEquality rename setElimination isectElimination Error :universeIsType,  Error :productIsType,  Error :functionIsType,  sqequalRule because_Cache productElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mforall{}B:\mBbbN{}.  \mexists{}k:K.  B  <  k)  {}\mRightarrow{}  (\mforall{}l:\mBbbN{}.  ((l  \mmember{}  K)  \mvee{}  (\mneg{}(l  \mmember{}  K)))))



Date html generated: 2019_06_20-PM-03_02_36
Last ObjectModification: 2019_06_13-PM-04_29_07

Theory : continuity


Home Index