Nuprl Lemma : ccc-nset-weakly-decidable

K:Type. (CCCNSet(K)  WD(K))


Proof




Definitions occuring in Statement :  weakly-decidable-nset: WD(K) ccc-nset: CCCNSet(K) all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  less_than': less_than'(a;b) respects-equality: respects-equality(S;T) cand: c∧ B ge: i ≥  squash: T less_than: a < b nat: sq_type: SQType(T) guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} ccc-nset: CCCNSet(K) prop: uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q weakly-decidable-nset: WD(K) implies:  Q all: x:A. B[x]
Lemmas referenced :  subtract_nat_wf add_nat_wf subtype-respects-equality subtype_rel_set equal_wf ccc-nset-minimum ccc-nset-remove1 int_term_value_add_lemma itermAdd_wf nat_properties primrec-wf2 not_wf lelt_wf equal-wf-base le_wf istype-nat less_than_wf contra-cc_wf subtype_rel_wf nat_wf subtype_rel_transitivity subtype_rel_self istype-less_than istype-le decidable__lt decidable__le int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermSubtract_wf intformeq_wf intformnot_wf int_subtype_base set_subtype_base subtype_base_sq subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma istype-void int_formula_prop_and_lemma istype-int intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties istype-universe ccc-nset_wf
Rules used in proof :  sqequalBase Error :inrFormation_alt,  baseClosed imageMemberEquality Error :inlFormation_alt,  setEquality Error :equalityIstype,  addEquality Error :setIsType,  imageElimination unionEquality productEquality functionEquality intEquality Error :inhabitedIsType,  Error :functionIsType,  hypothesis_subsumption Error :productIsType,  Error :dependent_set_memberEquality_alt,  applyLambdaEquality equalitySymmetry equalityTransitivity because_Cache applyEquality unionElimination cumulativity voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality rename setElimination sqequalRule productElimination universeEquality instantiate hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :universeIsType,  independent_pairFormation Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  WD(K))



Date html generated: 2019_06_20-PM-03_02_00
Last ObjectModification: 2019_06_13-PM-01_19_13

Theory : continuity


Home Index