Nuprl Lemma : ccc-nset-minimum

K:Type. (CCCNSet(K)  (∃n:K. ∀m:K. (n ≤ m)))


Proof




Definitions occuring in Statement :  ccc-nset: CCCNSet(K) le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  squash: T less_than: a < b cand: c∧ B less_than': less_than'(a;b) ge: i ≥  sq_type: SQType(T) or: P ∨ Q decidable: Dec(P) top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} guard: {T} uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T contra-cc: CCC(T) and: P ∧ Q ccc-nset: CCCNSet(K) implies:  Q all: x:A. B[x]
Lemmas referenced :  add_nat_wf int_term_value_add_lemma itermAdd_wf nat_properties primrec-wf2 less_than_wf subtype_rel_self istype-less_than istype-le decidable__lt decidable__le int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermSubtract_wf intformeq_wf intformnot_wf lelt_wf subtype_base_sq subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma istype-void int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_seg_properties istype-universe ccc-nset_wf istype-nat nat_wf subtype_rel_transitivity int_subtype_base istype-int le_wf set_subtype_base equal-wf-base
Rules used in proof :  imageElimination sqequalBase Error :equalityIstype,  addEquality Error :setIsType,  functionEquality hypothesis_subsumption Error :productIsType,  Error :dependent_set_memberEquality_alt,  applyLambdaEquality equalitySymmetry equalityTransitivity cumulativity unionElimination independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation universeEquality instantiate Error :universeIsType,  Error :functionIsType,  independent_functionElimination Error :inhabitedIsType,  setElimination because_Cache independent_isectElimination hypothesis natural_numberEquality intEquality applyEquality hypothesisEquality isectElimination extract_by_obid introduction cut sqequalRule productEquality Error :lambdaEquality_alt,  dependent_functionElimination rename thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mexists{}n:K.  \mforall{}m:K.  (n  \mleq{}  m)))



Date html generated: 2019_06_20-PM-03_01_40
Last ObjectModification: 2019_06_13-AM-11_28_18

Theory : continuity


Home Index