Nuprl Lemma : weak-continuity-skolem-truncated

[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]. ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(weak-continuity-skolem(T;F))


Proof




Definitions occuring in Statement :  weak-continuity-skolem: weak-continuity-skolem(T;F) quotient: x,y:A//B[x; y] nat: subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] squash: T and: P ∧ Q true: True set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B sq-basic-strong-continuity: sq-basic-strong-continuity(T;F) sq_exists: x:A [B[x]] basic-strong-continuity: basic-strong-continuity(T;F) prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a implies:  Q guard: {T} and: P ∧ Q
Lemmas referenced :  Kleene-M_wf subtype_rel_self quotient_wf basic-strong-continuity_wf true_wf equiv_rel_true implies-quotient-true weak-continuity-skolem_wf strong-continuity2-weak-skolem basic-implies-strong-continuity2 istype-nat istype-universe subtype_rel_wf nat_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule because_Cache Error :lambdaEquality_alt,  Error :inhabitedIsType,  Error :universeIsType,  setElimination rename independent_isectElimination independent_functionElimination Error :functionIsType,  Error :setIsType,  instantiate universeEquality Error :productIsType

Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ].  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \00D9(weak-continuity-skolem(T;F))



Date html generated: 2019_06_20-PM-02_51_14
Last ObjectModification: 2019_02_09-PM-11_56_39

Theory : continuity


Home Index