Nuprl Lemma : apply-Id-alist-function

[x:Id]. ∀[F:Top]. ∀[L:Id List].  apply-alist(IdDeq;map(λx.<x, F[x]>;L);x) inl F[x] supposing (x ∈ L)


Proof




Definitions occuring in Statement :  id-deq: IdDeq Id: Id apply-alist: apply-alist(eq;L;x) l_member: (x ∈ l) map: map(f;as) list: List uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] lambda: λx.A[x] pair: <a, b> inl: inl x sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q iff: ⇐⇒ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) apply-alist: apply-alist(eq;L;x) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pi1: fst(t) pi2: snd(t) eq_id: b bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  Id: Id bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf l_member_wf Id_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases nil_member nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int cons_member map_cons_lemma list_ind_cons_lemma eq_id_wf bool_wf eqtt_to_assert assert-eq-id atom2_subtype_base eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot cons_wf list_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom equalityTransitivity equalitySymmetry applyEquality because_Cache unionElimination productElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination equalityElimination

Latex:
\mforall{}[x:Id].  \mforall{}[F:Top].  \mforall{}[L:Id  List].
    apply-alist(IdDeq;map(\mlambda{}x.<x,  F[x]>L);x)  \msim{}  inl  F[x]  supposing  (x  \mmember{}  L)



Date html generated: 2017_04_17-AM-09_18_39
Last ObjectModification: 2017_02_27-PM-05_22_13

Theory : decidable!equality


Home Index