Nuprl Lemma : isl-list-index
∀[T:Type]. ∀eq:EqDecider(T). ∀x:T. ∀L:T List.  (↑isl(list-index(eq;L;x)) 
⇐⇒ (x ∈ L))
Proof
Definitions occuring in Statement : 
list-index: list-index(d;L;x)
, 
l_member: (x ∈ l)
, 
list: T List
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
isl: isl(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
list-index: list-index(d;L;x)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
btrue: tt
, 
true: True
, 
guard: {T}
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
eqof: eqof(d)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
Lemmas referenced : 
list_induction, 
iff_wf, 
assert_wf, 
isl_wf, 
int_seg_wf, 
length_wf, 
top_wf, 
list-index_wf, 
l_member_wf, 
list_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
deq_wf, 
false_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
equal_wf, 
cons_member, 
true_wf, 
cons_wf, 
eqof_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
universeEquality, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
productElimination, 
inrFormation, 
applyEquality, 
equalityElimination, 
setElimination, 
inlFormation, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}L:T  List.    (\muparrow{}isl(list-index(eq;L;x))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))
Date html generated:
2017_04_17-AM-09_15_07
Last ObjectModification:
2017_02_27-PM-05_20_25
Theory : decidable!equality
Home
Index