Nuprl Lemma : list-index_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[L:T List].  (list-index(eq;L;x) ∈ ℕ||L|| Top)


Proof




Definitions occuring in Statement :  list-index: list-index(d;L;x) length: ||as|| list: List deq: EqDecider(T) int_seg: {i..j-} uall: [x:A]. B[x] top: Top member: t ∈ T union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q list-index: list-index(d;L;x) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k subtract: m bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  le: A ≤ B nat_plus: + true: True bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma list_ind_nil_lemma int_seg_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma list_ind_cons_lemma add-member-int_seg2 decidable__lt length_wf eqof_wf bool_wf eqtt_to_assert safe-assert-deq false_wf add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties add-is-int-iff lelt_wf top_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot subtype_rel_union int_seg_subtype list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination inrEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination inlEquality equalityElimination imageMemberEquality pointwiseFunctionality baseApply closedConclusion universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[L:T  List].    (list-index(eq;L;x)  \mmember{}  \mBbbN{}||L||  +  Top)



Date html generated: 2017_04_17-AM-09_15_02
Last ObjectModification: 2017_02_27-PM-05_20_37

Theory : decidable!equality


Home Index