Nuprl Lemma : l_index_hd

[T:Type]. ∀[dT:EqDecider(T)]. ∀[L:T List].  index(L;hd(L)) supposing ¬↑null(L)


Proof




Definitions occuring in Statement :  l_index: index(L;x) hd: hd(l) null: null(as) list: List deq: EqDecider(T) assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A implies:  Q true: True false: False cons: [a b] top: Top bfalse: ff l_index: index(L;x) mu: mu(f) uimplies: supposing a prop: mu-ge: mu-ge(f;n) select: L[n] deq: EqDecider(T) bool: 𝔹 unit: Unit it: eqof: eqof(d) uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list-cases null_nil_lemma product_subtype_list null_cons_lemma reduce_hd_cons_lemma not_wf assert_wf null_wf list_wf deq_wf bool_wf equal-wf-T-base equal_wf bnot_wf eqof_wf uiff_transitivity eqtt_to_assert safe-assert-deq iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule independent_functionElimination natural_numberEquality voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality cumulativity because_Cache universeEquality isect_memberFormation sqequalAxiom equalityTransitivity equalitySymmetry callbyvalueReduce sqleReflexivity applyEquality setElimination rename baseClosed lambdaFormation equalityElimination independent_isectElimination independent_pairFormation addLevel impliesFunctionality levelHypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[dT:EqDecider(T)].  \mforall{}[L:T  List].    index(L;hd(L))  \msim{}  0  supposing  \mneg{}\muparrow{}null(L)



Date html generated: 2017_04_17-AM-09_15_53
Last ObjectModification: 2017_02_27-PM-05_21_17

Theory : decidable!equality


Home Index