Nuprl Lemma : l_index_hd
∀[T:Type]. ∀[dT:EqDecider(T)]. ∀[L:T List].  index(L;hd(L)) ~ 0 supposing ¬↑null(L)
Proof
Definitions occuring in Statement : 
l_index: index(L;x)
, 
hd: hd(l)
, 
null: null(as)
, 
list: T List
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
true: True
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
l_index: index(L;x)
, 
mu: mu(f)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
mu-ge: mu-ge(f;n)
, 
select: L[n]
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
eqof: eqof(d)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
not_wf, 
assert_wf, 
null_wf, 
list_wf, 
deq_wf, 
bool_wf, 
equal-wf-T-base, 
equal_wf, 
bnot_wf, 
eqof_wf, 
uiff_transitivity, 
eqtt_to_assert, 
safe-assert-deq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidEquality, 
cumulativity, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
sqequalAxiom, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
sqleReflexivity, 
applyEquality, 
setElimination, 
rename, 
baseClosed, 
lambdaFormation, 
equalityElimination, 
independent_isectElimination, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
levelHypothesis
Latex:
\mforall{}[T:Type].  \mforall{}[dT:EqDecider(T)].  \mforall{}[L:T  List].    index(L;hd(L))  \msim{}  0  supposing  \mneg{}\muparrow{}null(L)
Date html generated:
2017_04_17-AM-09_15_53
Last ObjectModification:
2017_02_27-PM-05_21_17
Theory : decidable!equality
Home
Index