Nuprl Lemma : nat-to-incomparable-property
∀[n,m:ℕ].  ¬nat-to-incomparable(n) ≤ nat-to-incomparable(m) supposing ¬(n = m ∈ ℤ)
Proof
Definitions occuring in Statement : 
nat-to-incomparable: nat-to-incomparable(n), 
iseg: l1 ≤ l2, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
int: ℤ, 
atom: Atom, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
nat-to-incomparable: nat-to-incomparable(n), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
or: P ∨ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
name: Name, 
nat: ℕ, 
rev_implies: P ⇐ Q, 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
deq-member: x ∈b L, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
cons: [a / b], 
bor: p ∨bq, 
atom-deq: AtomDeq, 
eq_atom: x =a y, 
bfalse: ff, 
nil: [], 
it: ⋅, 
exists: ∃x:A. B[x], 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
top: Top, 
sq_type: SQType(T), 
btrue: tt, 
true: True
Lemmas referenced : 
list_wf, 
true_wf, 
squash_wf, 
str-to-nat_wf, 
int_subtype_base, 
str-to-nat-to-str, 
append-cancellation-right, 
length_wf, 
null_cons_lemma, 
null_nil_lemma, 
iseg_nil, 
atom_subtype_base, 
subtype_base_sq, 
cons_iseg, 
length_of_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
list-cases, 
atom-deq_wf, 
assert-deq-member, 
member-nat-to-str, 
iseg_member, 
l_member_wf, 
cons_member, 
member_append, 
nat_wf, 
equal_wf, 
not_wf, 
name_wf, 
nat-to-incomparable_wf, 
iseg_wf, 
nil_wf, 
cons_wf, 
nat-to-str_wf, 
append_wf, 
iseg_append_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
atomEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
tokenEquality, 
productElimination, 
independent_functionElimination, 
unionElimination, 
because_Cache, 
voidElimination, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
intEquality, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
inlFormation, 
imageElimination, 
promote_hyp, 
hypothesis_subsumption, 
voidEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[n,m:\mBbbN{}].    \mneg{}nat-to-incomparable(n)  \mleq{}  nat-to-incomparable(m)  supposing  \mneg{}(n  =  m)
 Date html generated: 
2016_05_14-PM-03_36_17
 Last ObjectModification: 
2016_01_14-PM-11_19_20
Theory : decidable!equality
Home
Index