Nuprl Lemma : member-nat-to-str

n:ℕ. ∀s:Atom.  ((s ∈ nat-to-str(n))  (s ∈ ``0 9``))


Proof




Definitions occuring in Statement :  nat-to-str: nat-to-str(n) l_member: (x ∈ l) cons: [a b] nil: [] nat: all: x:A. B[x] implies:  Q token: "$token" atom: Atom
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} sq_type: SQType(T) nat: nat-to-str: nat-to-str(n) less_than: a < b squash: T ge: i ≥  iff: ⇐⇒ Q l_member: (x ∈ l) select: L[n] cons: [a b] cand: c∧ B less_than': less_than'(a;b) true: True nequal: a ≠ b ∈  int_upper: {i...} subtract: m uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt rev_implies:  Q bfalse: ff nat_plus: + int_nzero: -o
Lemmas referenced :  int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le istype-less_than subtype_rel_self l_member_wf nat-to-str_wf istype-atom cons_wf nil_wf primrec-wf2 nat_properties itermAdd_wf int_term_value_add_lemma istype-nat eq_int_wf member_singleton atom_subtype_base length_of_cons_lemma length_of_nil_lemma length_wf list_subtype_base le_wf assert_wf bnot_wf not_wf equal-wf-base istype-assert upper_subtype_nat istype-false nequal-le-implies zero-add int_upper_properties upper_subtype_upper add-commutes bool_cases bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot member_append divide_wf remainder_wf rem_bounds_1 div_rem_sum nequal_wf divide_wfa add-is-int-iff multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf remainder_wfa
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename productElimination hypothesis hypothesisEquality natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption atomEquality Error :functionIsType,  functionEquality imageElimination tokenEquality Error :setIsType,  Error :inhabitedIsType,  addEquality cumulativity imageMemberEquality baseClosed Error :equalityIstype,  baseApply closedConclusion intEquality sqequalBase promote_hyp pointwiseFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}s:Atom.    ((s  \mmember{}  nat-to-str(n))  {}\mRightarrow{}  (s  \mmember{}  ``0  1  2  3  4  5  6  7  8  9``))



Date html generated: 2019_06_20-PM-01_58_21
Last ObjectModification: 2019_03_06-AM-10_52_18

Theory : decidable!equality


Home Index