Nuprl Lemma : member-nat-to-str
∀n:ℕ. ∀s:Atom.  ((s ∈ nat-to-str(n)) 
⇒ (s ∈ ``0 1 2 3 4 5 6 7 8 9``))
Proof
Definitions occuring in Statement : 
nat-to-str: nat-to-str(n)
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
nil: []
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
token: "$token"
, 
atom: Atom
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
nat-to-str: nat-to-str(n)
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
iff: P 
⇐⇒ Q
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
cons: [a / b]
, 
cand: A c∧ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
int_upper: {i...}
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
Lemmas referenced : 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
istype-less_than, 
subtype_rel_self, 
l_member_wf, 
nat-to-str_wf, 
istype-atom, 
cons_wf, 
nil_wf, 
primrec-wf2, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
eq_int_wf, 
member_singleton, 
atom_subtype_base, 
length_of_cons_lemma, 
length_of_nil_lemma, 
length_wf, 
list_subtype_base, 
le_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
istype-assert, 
upper_subtype_nat, 
istype-false, 
nequal-le-implies, 
zero-add, 
int_upper_properties, 
upper_subtype_upper, 
add-commutes, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
member_append, 
divide_wf, 
remainder_wf, 
rem_bounds_1, 
div_rem_sum, 
nequal_wf, 
divide_wfa, 
add-is-int-iff, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
false_wf, 
remainder_wfa
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
hypothesis_subsumption, 
atomEquality, 
Error :functionIsType, 
functionEquality, 
imageElimination, 
tokenEquality, 
Error :setIsType, 
Error :inhabitedIsType, 
addEquality, 
cumulativity, 
imageMemberEquality, 
baseClosed, 
Error :equalityIstype, 
baseApply, 
closedConclusion, 
intEquality, 
sqequalBase, 
promote_hyp, 
pointwiseFunctionality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}s:Atom.    ((s  \mmember{}  nat-to-str(n))  {}\mRightarrow{}  (s  \mmember{}  ``0  1  2  3  4  5  6  7  8  9``))
Date html generated:
2019_06_20-PM-01_58_21
Last ObjectModification:
2019_03_06-AM-10_52_18
Theory : decidable!equality
Home
Index