Nuprl Lemma : remove-repeats-append-sq

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L1,L2:T List].
  (remove-repeats(eq;L1 L2) remove-repeats(eq;L1) filter(λx.(¬bx ∈b L1);remove-repeats(eq;L2)))


Proof




Definitions occuring in Statement :  remove-repeats: remove-repeats(eq;L) deq-member: x ∈b L filter: filter(P;l) append: as bs list: List deq: EqDecider(T) bnot: ¬bb uall: [x:A]. B[x] lambda: λx.A[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bnot: ¬bb ifthenelse: if then else fi  bfalse: ff remove-repeats: remove-repeats(eq;L) cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) btrue: tt bool: 𝔹 unit: Unit uiff: uiff(P;Q) iff: ⇐⇒ Q band: p ∧b q deq: EqDecider(T) eqof: eqof(d) assert: b bor: p ∨bq rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma deq_member_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma deq_member_cons_lemma list_wf deq_wf remove-repeats_wf filter_nil_lemma filter_cons_lemma filter_append_sq filter-filter deq-member_wf bool_wf eqtt_to_assert assert-deq-member safe-assert-deq testxxx_lemma eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache cumulativity applyEquality unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination universeEquality equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L1,L2:T  List].
    (remove-repeats(eq;L1  @  L2)  \msim{}  remove-repeats(eq;L1)
    @  filter(\mlambda{}x.(\mneg{}\msubb{}x  \mmember{}\msubb{}  L1);remove-repeats(eq;L2)))



Date html generated: 2017_04_17-AM-09_10_21
Last ObjectModification: 2017_02_27-PM-05_18_45

Theory : decidable!equality


Home Index