Nuprl Lemma : equipollent-implies-equal
∀[k,m:ℕ].  k = m ∈ ℤ supposing ℕk ~ ℕm
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
biject: Bij(A;B;f)
Lemmas referenced : 
injection_le, 
inject_wf, 
int_seg_wf, 
equipollent_inversion, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equipollent_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
productElimination, 
dependent_pairFormation_alt, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[k,m:\mBbbN{}].    k  =  m  supposing  \mBbbN{}k  \msim{}  \mBbbN{}m
Date html generated:
2020_05_19-PM-10_00_23
Last ObjectModification:
2019_10_23-PM-02_49_32
Theory : equipollence!!cardinality!
Home
Index