Nuprl Lemma : equipollent-implies-equal

[k,m:ℕ].  m ∈ ℤ supposing ℕ~ ℕm


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a equipollent: B exists: x:A. B[x] nat: prop: implies:  Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q biject: Bij(A;B;f)
Lemmas referenced :  injection_le inject_wf int_seg_wf equipollent_inversion nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf equipollent_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination productElimination dependent_pairFormation_alt universeIsType natural_numberEquality setElimination rename because_Cache hypothesis independent_functionElimination dependent_functionElimination unionElimination approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[k,m:\mBbbN{}].    k  =  m  supposing  \mBbbN{}k  \msim{}  \mBbbN{}m



Date html generated: 2020_05_19-PM-10_00_23
Last ObjectModification: 2019_10_23-PM-02_49_32

Theory : equipollence!!cardinality!


Home Index