Nuprl Lemma : assert-fset-pairwise
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)].
  uiff(↑fset-pairwise(x,y.R[x;y];s);∀x,y:T.  (↑R[x;y]) supposing (x ∈ s and y ∈ s))
Proof
Definitions occuring in Statement : 
fset-pairwise: fset-pairwise(x,y.R[x; y];s), 
fset-member: a ∈ s, 
fset: fset(T), 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
fset-pairwise: fset-pairwise(x,y.R[x; y];s), 
fset-all: fset-all(s;x.P[x]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
so_apply: x[s], 
prop: ℙ, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
fset-all-iff, 
iff_weakening_uiff, 
fset-all_wf, 
uall_wf, 
isect_wf, 
fset-member_wf, 
assert_wf, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
all_wf, 
uiff_wf, 
fset-pairwise_wf, 
fset_wf, 
bool_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
independent_pairFormation, 
isect_memberFormation, 
lambdaFormation, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
isect_memberEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
addLevel, 
functionEquality, 
universeEquality, 
independent_pairEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(\muparrow{}fset-pairwise(x,y.R[x;y];s);\mforall{}x,y:T.    (\muparrow{}R[x;y])  supposing  (x  \mmember{}  s  and  y  \mmember{}  s))
Date html generated:
2019_06_20-PM-01_59_27
Last ObjectModification:
2018_08_24-PM-11_34_36
Theory : finite!sets
Home
Index