Nuprl Lemma : iteration_terminates

[T:Type]
  ∀f:T ⟶ T. ∀m:T ⟶ ℕ.
    ∀x:T. ∃n:ℕ((f (f^n x)) (f^n x) ∈ T) 
    supposing ∀x:T. (((m (f x)) ≤ (m x)) ∧ (f x) x ∈ supposing (m (f x)) (m x) ∈ ℤ)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q le: A ≤ B subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) true: True nat_plus: + prop: guard: {T} squash: T exists: x:A. B[x] sq_stable: SqStable(P) ge: i ≥  less_than: a < b
Lemmas referenced :  le_witness_for_triv istype-le istype-nat istype-int set_subtype_base le_wf int_subtype_base istype-universe fun_exp0_lemma istype-void decidable__le subtract_wf istype-false not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero minus-zero add-associates zero-add add-commutes le-add-cancel fun_exp_wf less-iff-le minus-minus add_functionality_wrt_le istype-less_than primrec-wf2 or_wf equal_wf fun_exp_add1_sub equal-wf-base decidable__lt le_weakening2 le-add-cancel2 decidable__int_equal not-equal-2 not-lt-2 squash_wf true_wf subtype_rel_self iff_weakening_equal fun_exp_add istype_wf add_nat_wf sq_stable__le istype-sqequal nat_properties le-add-cancel-alt le_reflexive one-mul two-mul mul-distributes-right omega-shadow
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality extract_by_obid isectElimination equalityTransitivity hypothesis equalitySymmetry independent_isectElimination Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  rename Error :universeIsType,  Error :functionIsType,  Error :productIsType,  applyEquality setElimination because_Cache Error :isectIsType,  Error :equalityIstype,  intEquality closedConclusion natural_numberEquality sqequalBase instantiate universeEquality voidElimination unionElimination Error :inlFormation_alt,  independent_pairFormation addEquality minusEquality multiplyEquality independent_functionElimination Error :inrFormation_alt,  Error :unionIsType,  Error :dependent_set_memberEquality_alt,  Error :setIsType,  hyp_replacement applyLambdaEquality productEquality isectEquality Error :equalityIsType1,  imageElimination imageMemberEquality baseClosed unionEquality Error :dependent_pairFormation_alt,  promote_hyp

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}m:T  {}\mrightarrow{}  \mBbbN{}.
        \mforall{}x:T.  \mexists{}n:\mBbbN{}.  ((f  (f\^{}n  x))  =  (f\^{}n  x)) 
        supposing  \mforall{}x:T.  (((m  (f  x))  \mleq{}  (m  x))  \mwedge{}  (f  x)  =  x  supposing  (m  (f  x))  =  (m  x))



Date html generated: 2019_06_20-PM-00_27_05
Last ObjectModification: 2018_11_23-PM-00_41_17

Theory : fun_1


Home Index