Nuprl Lemma : modulus_base_neg

[m:ℕ+]. ∀[a:{-m..0-}].  (a mod a)


Proof




Definitions occuring in Statement :  modulus: mod n int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] add: m minus: -n natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] modulus: mod n has-value: (a)↓ nat_plus: + nequal: a ≠ b ∈  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top prop: subtype_rel: A ⊆B int_lower: {...i} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) gt: i > j ge: i ≥  less_than: a < b squash: T bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than': less_than'(a;b) true: True bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B
Lemmas referenced :  subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base value-type-has-value int-value-type int_seg_properties nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformle_wf itermMinus_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma int_term_value_minus_lemma int_formula_prop_wf rem_bounds_2 subtype_rel_sets lelt_wf decidable__le intformnot_wf int_formula_prop_not_lemma div_bounds_2 div_rem_sum absval-non-neg absval_pos nat_plus_subtype_nat int_seg_wf nat_plus_wf decidable__equal_int equal-wf-base lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality callbyvalueReduce remainderEquality because_Cache setElimination rename minusEquality productElimination lambdaFormation approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation applyEquality setEquality unionElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry sqequalAxiom divideEquality imageElimination baseClosed equalityElimination lessCases imageMemberEquality addEquality promote_hyp

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[a:\{-m..0\msupminus{}\}].    (a  mod  m  \msim{}  m  +  a)



Date html generated: 2018_05_21-PM-00_25_29
Last ObjectModification: 2018_05_19-AM-06_52_15

Theory : int_2


Home Index