Nuprl Lemma : modulus_base_neg
∀[m:ℕ+]. ∀[a:{-m..0-}].  (a mod m ~ m + a)
Proof
Definitions occuring in Statement : 
modulus: a mod n
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
modulus: a mod n
, 
has-value: (a)↓
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
int_lower: {...i}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
gt: i > j
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
le: A ≤ B
Lemmas referenced : 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
int_seg_properties, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformle_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
rem_bounds_2, 
subtype_rel_sets, 
lelt_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
div_bounds_2, 
div_rem_sum, 
absval-non-neg, 
absval_pos, 
nat_plus_subtype_nat, 
int_seg_wf, 
nat_plus_wf, 
decidable__equal_int, 
equal-wf-base, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
mul_preserves_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
callbyvalueReduce, 
remainderEquality, 
because_Cache, 
setElimination, 
rename, 
minusEquality, 
productElimination, 
lambdaFormation, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
applyEquality, 
setEquality, 
unionElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalAxiom, 
divideEquality, 
imageElimination, 
baseClosed, 
equalityElimination, 
lessCases, 
imageMemberEquality, 
addEquality, 
promote_hyp
Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[a:\{-m..0\msupminus{}\}].    (a  mod  m  \msim{}  m  +  a)
Date html generated:
2018_05_21-PM-00_25_29
Last ObjectModification:
2018_05_19-AM-06_52_15
Theory : int_2
Home
Index