Nuprl Lemma : sum_functionality_wrt_sqequal
∀[n:ℕ]. ∀[f,g:Base].  Σ(f[x] | x < n) ~ Σ(g[x] | x < n) supposing ∀i:ℕn. (f[i] ~ g[i])
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k), 
int_seg: {i..j-}, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
natural_number: $n, 
base: Base, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
so_apply: x[s], 
sum: Σ(f[x] | x < k), 
sum_aux: sum_aux(k;v;i;x.f[x]), 
int_seg: {i..j-}, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
lelt: i ≤ j < k, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
all_wf, 
int_seg_wf, 
sqequal-wf-base, 
less_than_transitivity1, 
less_than_irreflexivity, 
base_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
decidable__lt, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
sum-unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
productElimination, 
equalityElimination, 
lessCases, 
imageMemberEquality, 
imageElimination, 
dependent_set_memberEquality, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:Base].    \mSigma{}(f[x]  |  x  <  n)  \msim{}  \mSigma{}(g[x]  |  x  <  n)  supposing  \mforall{}i:\mBbbN{}n.  (f[i]  \msim{}  g[i])
 Date html generated: 
2017_04_14-AM-09_21_24
 Last ObjectModification: 
2017_02_27-PM-03_57_26
Theory : int_2
Home
Index