Nuprl Lemma : apply_alist-eager-map
∀[T:Type]
  ∀[eq:EqDecider(T)]. ∀[f:Top]. ∀[L:T List]. ∀[i:{i:T| (i ∈ L)} ].  (apply_alist(eq;eager-map(λi.<i, f i>L);i) ~ f i) 
  supposing value-type(T) ∧ (T ⊆r Base)
Proof
Definitions occuring in Statement : 
apply_alist: apply_alist(eq;L;x)
, 
l_member: (x ∈ l)
, 
eager-map: eager-map(f;as)
, 
list: T List
, 
deq: EqDecider(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
base: Base
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
prop: ℙ
, 
or: P ∨ Q
, 
not: ¬A
, 
cons: [a / b]
, 
top: Top
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sq_stable: SqStable(P)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
has-value: (a)↓
, 
apply_alist: apply_alist(eq;L;x)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
true: True
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
list-cases, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
l_member_wf, 
product_subtype_list, 
colength-cons-not-zero, 
istype-void, 
colength_wf_list, 
istype-false, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
spread_cons_lemma, 
sq_stable__le, 
add-associates, 
add-commutes, 
add-swap, 
zero-add, 
eager_map_cons_lemma, 
value-type-has-value, 
list_wf, 
top_wf, 
list-value-type, 
eager-map_wf, 
product-value-type, 
deq_property, 
subtype_rel_transitivity, 
cons_wf, 
base_wf, 
istype-true, 
cons_member, 
le_weakening2, 
istype-nat, 
istype-top, 
deq_wf, 
value-type_wf, 
subtype_rel_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
independent_pairFormation, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
sqequalRule, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :setIsType, 
promote_hyp, 
hypothesis_subsumption, 
Error :equalityIstype, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
cumulativity, 
intEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
applyEquality, 
sqequalBase, 
functionExtensionality, 
callbyvalueReduce, 
productEquality, 
independent_pairEquality, 
Error :productIsType, 
Error :isectIsType, 
setEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[f:Top].  \mforall{}[L:T  List].  \mforall{}[i:\{i:T|  (i  \mmember{}  L)\}  ].
        (apply\_alist(eq;eager-map(\mlambda{}i.<i,  f  i>L);i)  \msim{}  f  i) 
    supposing  value-type(T)  \mwedge{}  (T  \msubseteq{}r  Base)
Date html generated:
2019_06_20-PM-00_42_49
Last ObjectModification:
2019_02_28-PM-01_47_52
Theory : list_0
Home
Index