Nuprl Lemma : apply_alist-eager-map

[T:Type]
  ∀[eq:EqDecider(T)]. ∀[f:Top]. ∀[L:T List]. ∀[i:{i:T| (i ∈ L)} ].  (apply_alist(eq;eager-map(λi.<i, i>;L);i) i) 
  supposing value-type(T) ∧ (T ⊆Base)


Proof




Definitions occuring in Statement :  apply_alist: apply_alist(eq;L;x) l_member: (x ∈ l) eager-map: eager-map(f;as) list: List deq: EqDecider(T) value-type: value-type(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] pair: <a, b> base: Base universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} prop: or: P ∨ Q not: ¬A cons: [a b] top: Top less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) subtract: m subtype_rel: A ⊆B has-value: (a)↓ apply_alist: apply_alist(eq;L;x) deq: EqDecider(T) bool: 𝔹 assert: b ifthenelse: if then else fi  uiff: uiff(P;Q) true: True iff: ⇐⇒ Q
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than list-cases null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse l_member_wf product_subtype_list colength-cons-not-zero istype-void colength_wf_list istype-false istype-le subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma sq_stable__le add-associates add-commutes add-swap zero-add eager_map_cons_lemma value-type-has-value list_wf top_wf list-value-type eager-map_wf product-value-type deq_property subtype_rel_transitivity cons_wf base_wf istype-true cons_member le_weakening2 istype-nat istype-top deq_wf value-type_wf subtype_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  sqequalRule Error :lambdaEquality_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  axiomSqEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  unionElimination equalityTransitivity equalitySymmetry Error :setIsType,  promote_hyp hypothesis_subsumption Error :equalityIstype,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate cumulativity intEquality imageMemberEquality baseClosed applyLambdaEquality baseApply closedConclusion applyEquality sqequalBase functionExtensionality callbyvalueReduce productEquality independent_pairEquality Error :productIsType,  Error :isectIsType,  setEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[f:Top].  \mforall{}[L:T  List].  \mforall{}[i:\{i:T|  (i  \mmember{}  L)\}  ].
        (apply\_alist(eq;eager-map(\mlambda{}i.<i,  f  i>L);i)  \msim{}  f  i) 
    supposing  value-type(T)  \mwedge{}  (T  \msubseteq{}r  Base)



Date html generated: 2019_06_20-PM-00_42_49
Last ObjectModification: 2019_02_28-PM-01_47_52

Theory : list_0


Home Index