Nuprl Lemma : apply_alist_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[V:Type]. ∀[L:(T × V) List].
  apply_alist(eq;L;x) ∈ {v:V| (<x, v> ∈ L)}  supposing (x ∈ map(λa.(fst(a));L))


Proof




Definitions occuring in Statement :  apply_alist: apply_alist(eq;L;x) l_member: (x ∈ l) map: map(f;as) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) member: t ∈ T set: {x:A| B[x]}  lambda: λx.A[x] pair: <a, b> product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: or: P ∨ Q top: Top not: ¬A cons: [a b] less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) subtract: m subtype_rel: A ⊆B iff: ⇐⇒ Q pi1: fst(t) apply_alist: apply_alist(eq;L;x) deq: EqDecider(T) bool: 𝔹 uiff: uiff(P;Q) rev_implies:  Q true: True assert: b ifthenelse: if then else fi 
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than list-cases map_nil_lemma istype-void null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse l_member_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false istype-le subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma sq_stable__le add-associates add-commutes add-swap zero-add map_cons_lemma cons_member map_wf pi1_wf deq_property equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal cons_wf istype-assert le_weakening2 istype-nat list_wf deq_wf istype-universe subtype_rel_sets_simple
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  Error :lambdaEquality_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  productEquality unionElimination promote_hyp hypothesis_subsumption Error :equalityIstype,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate cumulativity intEquality imageMemberEquality baseClosed applyLambdaEquality baseApply closedConclusion applyEquality sqequalBase independent_pairEquality Error :inlFormation_alt,  universeEquality Error :productIsType,  Error :isectIsType,  Error :inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[V:Type].  \mforall{}[L:(T  \mtimes{}  V)  List].
    apply\_alist(eq;L;x)  \mmember{}  \{v:V|  (<x,  v>  \mmember{}  L)\}    supposing  (x  \mmember{}  map(\mlambda{}a.(fst(a));L))



Date html generated: 2019_06_20-PM-00_42_44
Last ObjectModification: 2019_02_28-PM-00_01_09

Theory : list_0


Home Index