Nuprl Lemma : co-cons-not-co-nil
∀[T:Type]. ∀[a:T]. ∀[b:colist(T)].  uiff([a / b] = () ∈ colist(T);False)
Proof
Definitions occuring in Statement : 
co-cons: [x / L]
, 
co-nil: ()
, 
colist: colist(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
false: False
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
nil: []
, 
bfalse: ff
, 
cons: [a / b]
, 
top: Top
, 
co-nil: ()
, 
co-cons: [x / L]
, 
not: ¬A
Lemmas referenced : 
colist-ext, 
isaxiom_wf_listunion, 
colist_wf, 
subtype_rel_b-union-left, 
unit_wf2, 
axiom-listunion, 
null_nil_lemma, 
btrue_wf, 
subtype_rel_b-union-right, 
non-axiom-listunion, 
null_cons_lemma, 
istype-void, 
bfalse_wf, 
co-cons_wf, 
co-nil_wf, 
istype-universe, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
applyLambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
promote_hyp, 
productElimination, 
hypothesis_subsumption, 
hypothesis, 
applyEquality, 
sqequalRule, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productEquality, 
independent_isectElimination, 
rename, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
independent_pairEquality, 
Error :isectIsTypeImplies, 
axiomEquality, 
Error :universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[b:colist(T)].    uiff([a  /  b]  =  ();False)
Date html generated:
2019_06_20-PM-00_41_50
Last ObjectModification:
2019_01_02-PM-05_22_38
Theory : list_0
Home
Index