Nuprl Lemma : co-cons-not-co-nil

[T:Type]. ∀[a:T]. ∀[b:colist(T)].  uiff([a b] () ∈ colist(T);False)


Proof




Definitions occuring in Statement :  co-cons: [x L] co-nil: () colist: colist(T) uiff: uiff(P;Q) uall: [x:A]. B[x] false: False universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a false: False ext-eq: A ≡ B subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt nil: [] bfalse: ff cons: [a b] top: Top co-nil: () co-cons: [x L] not: ¬A
Lemmas referenced :  colist-ext isaxiom_wf_listunion colist_wf subtype_rel_b-union-left unit_wf2 axiom-listunion null_nil_lemma btrue_wf subtype_rel_b-union-right non-axiom-listunion null_cons_lemma istype-void bfalse_wf co-cons_wf co-nil_wf istype-universe btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation applyLambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality promote_hyp productElimination hypothesis_subsumption hypothesis applyEquality sqequalRule Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination productEquality independent_isectElimination rename dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry independent_functionElimination because_Cache independent_pairEquality Error :isectIsTypeImplies,  axiomEquality Error :universeIsType,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[b:colist(T)].    uiff([a  /  b]  =  ();False)



Date html generated: 2019_06_20-PM-00_41_50
Last ObjectModification: 2019_01_02-PM-05_22_38

Theory : list_0


Home Index