Nuprl Lemma : colength-positive
∀[T:Type]. ∀[L:T List].
  (0 < colength(L)
  
⇒ {(fst(L) ∈ T) ∧ (snd(L) ∈ T List) ∧ (colength(L) = (1 + colength(snd(L))) ∈ ℤ) ∧ (L ~ [fst(L) / (snd(L))])})
Proof
Definitions occuring in Statement : 
cons: [a / b]
, 
list: T List
, 
colength: colength(L)
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
list: T List
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uimplies: b supposing a
, 
nil: []
, 
colength: colength(L)
, 
has-value: (a)↓
, 
cons: [a / b]
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
bfalse: ff
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
colist-ext, 
isaxiom_wf_listunion, 
colist_wf, 
bool_wf, 
subtype_rel_b-union-left, 
unit_wf2, 
axiom-listunion, 
subtype_rel_b-union-right, 
non-axiom-listunion, 
colength_wf_list, 
nat_wf, 
equal_wf, 
less_than_wf, 
list_wf, 
colength_wf, 
subtype_partial_sqtype_base, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
has-value_wf-partial, 
set-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
promote_hyp, 
productElimination, 
hypothesis_subsumption, 
hypothesis, 
applyEquality, 
sqequalRule, 
unionElimination, 
equalityElimination, 
productEquality, 
independent_isectElimination, 
imageElimination, 
voidElimination, 
independent_pairFormation, 
addEquality, 
natural_numberEquality, 
cumulativity, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
sqequalAxiom, 
because_Cache, 
isect_memberEquality, 
universeEquality, 
intEquality, 
callbyvalueAdd, 
baseClosed, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].
    (0  <  colength(L)
    {}\mRightarrow{}  \{(fst(L)  \mmember{}  T)
          \mwedge{}  (snd(L)  \mmember{}  T  List)
          \mwedge{}  (colength(L)  =  (1  +  colength(snd(L))))
          \mwedge{}  (L  \msim{}  [fst(L)  /  (snd(L))])\})
Date html generated:
2017_04_14-AM-07_54_20
Last ObjectModification:
2017_02_27-PM-03_21_16
Theory : list_0
Home
Index