Nuprl Lemma : evalall-append-nil
∀[l:Base]. evalall(l @ []) ~ l supposing (evalall(l @ []))↓
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
nil: []
, 
has-value: (a)↓
, 
evalall: evalall(t)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
top: Top
, 
evalall: evalall(t)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat_plus: ℕ+
, 
has-value: (a)↓
, 
outl: outl(x)
, 
outr: outr(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
pi2: snd(t)
, 
bfalse: ff
, 
it: ⋅
, 
nil: []
, 
list_ind: list_ind
Lemmas referenced : 
list_ind_nil_lemma, 
has-value-implies-dec-isaxiom, 
isaxiom-append-nil, 
assert_of_bnot, 
bfalse_wf, 
btrue_wf, 
sqeqff_to_assert, 
ispair-or-isaxiom-append-nil, 
is-exception_wf, 
evalall-sqequal, 
pi1_cons_lemma, 
list_ind_cons_lemma, 
pair-eta, 
prod-if-ispair-append-nil, 
pi2-if-ispair-append-nil, 
pi1-if-ispair-append-nil, 
has-value-implies-dec-isinr-2, 
has-value-implies-dec-isinl-2, 
top_wf, 
has-value-implies-dec-ispair-2, 
fun_exp_unroll_1, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
bottom_diverge, 
strictness-apply, 
fun_exp0_lemma, 
int_subtype_base, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
append-nil-sqle, 
evalall-sqle, 
base_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
sqleTransitivity, 
voidElimination, 
voidEquality, 
compactness, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_functionElimination, 
lambdaEquality, 
dependent_functionElimination, 
axiomSqleEquality, 
applyEquality, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
sqleRule, 
divergentSqle, 
sqleReflexivity, 
ispairCases, 
isinlCases, 
isinrCases, 
exceptionSqequal
Latex:
\mforall{}[l:Base].  evalall(l  @  [])  \msim{}  l  supposing  (evalall(l  @  []))\mdownarrow{}
Date html generated:
2016_05_14-AM-06_32_35
Last ObjectModification:
2016_01_14-PM-08_27_24
Theory : list_0
Home
Index