Nuprl Lemma : sorted-cons

[T:Type]. ∀[x:T]. ∀[L:T List].  uiff(sorted([x L]);sorted(L) ∧ (∀z∈L.x ≤ z)) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) sorted: sorted(L) cons: [a b] list: List uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q int: universe: Type
Definitions unfolded in proof :  sorted: sorted(L) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q int_seg: {i..j-} le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B lelt: i ≤ j < k guard: {T} prop: l_all: (∀x∈L.P[x]) sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] exists: x:A. B[x] nat: so_apply: x[s] subtract: m nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q select: L[n] cons: [a b] sq_type: SQType(T)
Lemmas referenced :  length_of_cons_lemma int_seg_wf length_wf less_than'_wf select_wf less_than_transitivity2 le_weakening2 sq_stable__le all_wf le_wf non_neg_length length_wf_nat nat_wf set_subtype_base int_subtype_base equal_wf l_all_wf l_member_wf list_wf subtype_rel_wf add-commutes less-iff-le add_functionality_wrt_le subtract_wf le_reflexive add-associates minus-add minus-one-mul one-mul add-swap add-mul-special two-mul mul-distributes-right zero-add zero-mul add-zero not-lt-2 omega-shadow less_than_wf mul-distributes mul-associates mul-commutes minus-one-mul-top int_seg_properties nat_properties decidable__lt add-member-int_seg2 decidable__le false_wf not-le-2 condition-implies-le le-add-cancel2 lelt_wf subtype_rel_list le-add-cancel squash_wf true_wf select_cons_tl iff_weakening_equal select-cons-tl decidable__equal_int subtype_base_sq minus-minus le_antisymmetry_iff not-equal-2 minus-zero le-add-cancel-alt
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation independent_pairFormation lambdaFormation isectElimination natural_numberEquality setElimination rename hypothesisEquality cumulativity productElimination independent_pairEquality lambdaEquality because_Cache applyEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality baseClosed imageElimination addEquality dependent_pairFormation sqequalIntensionalEquality intEquality promote_hyp productEquality setEquality universeEquality multiplyEquality minusEquality dependent_set_memberEquality unionElimination instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[L:T  List].    uiff(sorted([x  /  L]);sorted(L)  \mwedge{}  (\mforall{}z\mmember{}L.x  \mleq{}  z))  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2017_04_14-AM-08_44_06
Last ObjectModification: 2017_02_27-PM-03_32_54

Theory : list_0


Home Index