Nuprl Lemma : sorted-cons
∀[T:Type]. ∀[x:T]. ∀[L:T List].  uiff(sorted([x / L]);sorted(L) ∧ (∀z∈L.x ≤ z)) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
sorted: sorted(L)
, 
cons: [a / b]
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
sorted: sorted(L)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
prop: ℙ
, 
l_all: (∀x∈L.P[x])
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
subtract: n - m
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
select: L[n]
, 
cons: [a / b]
, 
sq_type: SQType(T)
Lemmas referenced : 
length_of_cons_lemma, 
int_seg_wf, 
length_wf, 
less_than'_wf, 
select_wf, 
less_than_transitivity2, 
le_weakening2, 
sq_stable__le, 
all_wf, 
le_wf, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
set_subtype_base, 
int_subtype_base, 
equal_wf, 
l_all_wf, 
l_member_wf, 
list_wf, 
subtype_rel_wf, 
add-commutes, 
less-iff-le, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
add-associates, 
minus-add, 
minus-one-mul, 
one-mul, 
add-swap, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-add, 
zero-mul, 
add-zero, 
not-lt-2, 
omega-shadow, 
less_than_wf, 
mul-distributes, 
mul-associates, 
mul-commutes, 
minus-one-mul-top, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
add-member-int_seg2, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
le-add-cancel2, 
lelt_wf, 
subtype_rel_list, 
le-add-cancel, 
squash_wf, 
true_wf, 
select_cons_tl, 
iff_weakening_equal, 
select-cons-tl, 
decidable__equal_int, 
subtype_base_sq, 
minus-minus, 
le_antisymmetry_iff, 
not-equal-2, 
minus-zero, 
le-add-cancel-alt
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
cumulativity, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
intEquality, 
promote_hyp, 
productEquality, 
setEquality, 
universeEquality, 
multiplyEquality, 
minusEquality, 
dependent_set_memberEquality, 
unionElimination, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[L:T  List].    uiff(sorted([x  /  L]);sorted(L)  \mwedge{}  (\mforall{}z\mmember{}L.x  \mleq{}  z))  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2017_04_14-AM-08_44_06
Last ObjectModification:
2017_02_27-PM-03_32_54
Theory : list_0
Home
Index