Nuprl Lemma : whole_segment-sq

as:Top List. (as[0..||as||-as)


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| list: List top: Top all: x:A. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  segment: as[m..n-] all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff subtract: m btrue: tt firstn: firstn(n;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b bool: 𝔹 unit: Unit exists: x:A. B[x] assert: b nat_plus: +
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list top_wf int_subtype_base list_wf list-cases length_of_nil_lemma reduce_tl_nil_lemma list_ind_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base length_of_cons_lemma reduce_tl_cons_lemma list_ind_cons_lemma lt_int_wf length_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot minus-zero non_neg_length length_wf_nat le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul not-lt-2 omega-shadow decidable__lt
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination sqequalAxiom applyEquality unionElimination isect_memberEquality voidEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality because_Cache dependent_set_memberEquality independent_pairFormation minusEquality equalityTransitivity equalitySymmetry intEquality instantiate cumulativity equalityElimination dependent_pairFormation sqequalIntensionalEquality multiplyEquality

Latex:
\mforall{}as:Top  List.  (as[0..||as||\msupminus{}]  \msim{}  as)



Date html generated: 2018_05_21-PM-00_19_24
Last ObjectModification: 2018_05_19-AM-06_59_34

Theory : list_0


Home Index