Nuprl Lemma : cardinality-le-list

[T:Type]. ∀n:ℕ(|T| ≤  (∃L:T List. ((||L|| n ∈ ℤ) ∧ (∀x:T. (x ∈ L)))))


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n l_member: (x ∈ l) length: ||as|| list: List nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  cardinality-le: |T| ≤ n uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: nat: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B top: Top surject: Surj(A;B;f) l_member: (x ∈ l) subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  exists_wf int_seg_wf surject_wf nat_wf mklist_wf mklist_length equal_wf length_wf all_wf l_member_wf int_seg_subtype_nat false_wf int_seg_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf less_than_wf select_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma squash_wf true_wf mklist_select iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination functionEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis cumulativity lambdaEquality because_Cache functionExtensionality applyEquality universeEquality dependent_pairFormation isect_memberEquality voidElimination voidEquality independent_pairFormation productEquality intEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination unionElimination int_eqEquality computeAll imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  (|T|  \mleq{}  n  {}\mRightarrow{}  (\mexists{}L:T  List.  ((||L||  =  n)  \mwedge{}  (\mforall{}x:T.  (x  \mmember{}  L)))))



Date html generated: 2017_04_17-AM-07_45_16
Last ObjectModification: 2017_02_27-PM-04_17_04

Theory : list_1


Home Index