Nuprl Lemma : comparison-linear

[T:Type]. ∀cmp:comparison(T). Linorder(cmp-type(T;cmp);x,y.cmp-le(cmp;x;y))


Proof




Definitions occuring in Statement :  cmp-le: cmp-le(cmp;x;y) cmp-type: cmp-type(T;cmp) comparison: comparison(T) linorder: Linorder(T;x,y.R[x; y]) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] linorder: Linorder(T;x,y.R[x; y]) and: P ∧ Q order: Order(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) member: t ∈ T refl: Refl(T;x,y.E[x; y]) cmp-le: cmp-le(cmp;x;y) uimplies: supposing a cmp-type: cmp-type(T;cmp) quotient: x,y:A//B[x; y] implies:  Q comparison: comparison(T) subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A anti_sym: AntiSym(T;x,y.R[x; y]) prop: trans: Trans(T;x,y.E[x; y]) true: True or: P ∨ Q decidable: Dec(P) iff: ⇐⇒ Q squash: T rev_implies:  Q so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  comparison_wf istype-universe cmp-type_wf subtype_base_sq int_subtype_base comparison-reflexive istype-int istype-false cmp-le_wf decidable__cmp-le iff_weakening_equal subtype_rel_self true_wf squash_wf equal_wf comparison-equiv equal-wf-base quotient-member-eq le_wf int_formula_prop_wf int_term_value_minus_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermMinus_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis instantiate isectElimination universeEquality cumulativity intEquality independent_isectElimination pointwiseFunctionalityForEquality sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :equalityIsType1,  independent_functionElimination Error :productIsType,  Error :equalityIstype,  sqequalBase because_Cache applyEquality setElimination rename baseClosed natural_numberEquality voidElimination unionElimination pointwiseFunctionality imageMemberEquality imageElimination Error :lambdaEquality_alt,  Error :equalityIsType4,  promote_hyp hyp_replacement Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation Error :inrFormation_alt,  Error :inlFormation_alt,  minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  Linorder(cmp-type(T;cmp);x,y.cmp-le(cmp;x;y))



Date html generated: 2019_06_20-PM-01_42_08
Last ObjectModification: 2018_11_22-PM-10_09_55

Theory : list_1


Home Index