Nuprl Lemma : cons-sub-co-list-nil
∀[T:Type]. ∀x:T. ∀L:colist(T).  (sub-co-list(T;[x / L];[]) ⇐⇒ False)
Proof
Definitions occuring in Statement : 
sub-co-list: sub-co-list(T;s1;s2), 
cons: [a / b], 
nil: [], 
colist: colist(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
false: False, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
sub-co-list: sub-co-list(T;s1;s2), 
exists: ∃x:A. B[x], 
ext-eq: A ≡ B, 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uimplies: b supposing a, 
nil: [], 
list-at: L1@L2, 
ifthenelse: if b then t else f fi , 
null: null(as), 
bfalse: ff, 
cons: [a / b], 
top: Top, 
not: ¬A, 
false: False, 
co-cons: [x / L], 
prop: ℙ, 
list: T List, 
rev_implies: P ⇐ Q
Lemmas referenced : 
colist_wf, 
istype-universe, 
colist-ext, 
nat_wf, 
isaxiom_wf_listunion, 
subtype_rel_b-union-left, 
unit_wf2, 
axiom-listunion, 
subtype_rel_b-union-right, 
non-axiom-listunion, 
null_nil_lemma, 
btrue_wf, 
null_cons_lemma, 
istype-void, 
bfalse_wf, 
btrue_neq_bfalse, 
sub-co-list_wf, 
co-cons_wf, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
universeEquality, 
independent_pairFormation, 
productElimination, 
promote_hyp, 
hypothesis_subsumption, 
applyEquality, 
sqequalRule, 
Error :inhabitedIsType, 
unionElimination, 
equalityElimination, 
productEquality, 
independent_isectElimination, 
rename, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
applyLambdaEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
Error :lambdaEquality_alt, 
setElimination
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:colist(T).    (sub-co-list(T;[x  /  L];[])  \mLeftarrow{}{}\mRightarrow{}  False)
Date html generated:
2019_06_20-PM-01_22_07
Last ObjectModification:
2019_01_02-PM-04_52_20
Theory : list_1
Home
Index