Nuprl Lemma : hd-append

[T:Type]. ∀[L1:T List+]. ∀[L2:T List].  (hd(L1 L2) hd(L1) ∈ T)


Proof




Definitions occuring in Statement :  listp: List+ hd: hd(l) append: as bs list: List uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T listp: List+ subtype_rel: A ⊆B uimplies: supposing a top: Top squash: T prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) assert: b ifthenelse: if then else fi  btrue: tt sq_type: SQType(T) select: L[n]
Lemmas referenced :  select-as-hd append_wf subtype_rel_list top_wf listp_properties equal_wf squash_wf true_wf select_append false_wf non_neg_length decidable__lt length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf select_wf iff_weakening_equal subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool lt_int_wf btrue_wf less_than_wf assert_of_lt_int assert_wf iff_wf list_wf listp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality setElimination rename because_Cache hypothesis applyEquality independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation dependent_functionElimination addEquality unionElimination productElimination dependent_pairFormation int_eqEquality intEquality computeAll imageMemberEquality baseClosed universeEquality independent_functionElimination instantiate addLevel impliesFunctionality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1:T  List\msupplus{}].  \mforall{}[L2:T  List].    (hd(L1  @  L2)  =  hd(L1))



Date html generated: 2017_04_17-AM-08_48_09
Last ObjectModification: 2017_02_27-PM-05_06_53

Theory : list_1


Home Index