Nuprl Lemma : select_append

[T:Type]. ∀[as,bs:T List]. ∀[i:ℕ||as|| ||bs||].  (as bs[i] if i <||as|| then as[i] else bs[i ||as||] fi  ∈ T)


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| append: as bs list: List int_seg: {i..j-} ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] subtract: m add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  lelt: i ≤ j < k prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False decidable: Dec(P) less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  lt_int_wf length_wf bool_wf eqtt_to_assert assert_of_lt_int select_append_front lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not_functionality_wrt_uiff assert_wf less_than_wf select_append_back decidable__le add-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf false_wf int_seg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination sqequalRule dependent_set_memberEquality independent_pairFormation natural_numberEquality cumulativity dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination pointwiseFunctionality imageElimination baseApply closedConclusion baseClosed approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality addEquality Error :universeIsType,  axiomEquality Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].  \mforall{}[i:\mBbbN{}||as||  +  ||bs||].
    (as  @  bs[i]  =  if  i  <z  ||as||  then  as[i]  else  bs[i  -  ||as||]  fi  )



Date html generated: 2019_06_20-PM-01_19_45
Last ObjectModification: 2018_09_26-PM-05_20_43

Theory : list_1


Home Index