Nuprl Lemma : hd-before

[T:Type]. ∀L:T List. ∀x:T. ((x ∈ L)  hd(L) before x ∈ supposing ¬(x hd(L) ∈ T)) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  l_before: before y ∈ l l_member: (x ∈ l) hd: hd(l) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q not: ¬A false: False ge: i ≥  decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: less_than': less_than'(a;b) cons: [a b] iff: ⇐⇒ Q cand: c∧ B rev_implies:  Q
Lemmas referenced :  member-less_than length_wf equal_wf hd_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf list-cases length_of_nil_lemma product_subtype_list reduce_hd_cons_lemma length_of_cons_lemma not_wf l_member_wf less_than_wf list_wf cons_member l_before_wf cons_before
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis independent_isectElimination rename sqequalRule lambdaEquality dependent_functionElimination voidElimination because_Cache unionElimination imageElimination productElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll promote_hyp hypothesis_subsumption universeEquality independent_functionElimination inlFormation

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  hd(L)  before  x  \mmember{}  L  supposing  \mneg{}(x  =  hd(L)))  supposing  0  <  ||L||



Date html generated: 2017_04_17-AM-08_47_53
Last ObjectModification: 2017_02_27-PM-05_06_24

Theory : list_1


Home Index