Nuprl Lemma : hd-before
∀[T:Type]. ∀L:T List. ∀x:T. ((x ∈ L) 
⇒ hd(L) before x ∈ L supposing ¬(x = hd(L) ∈ T)) supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
l_member: (x ∈ l)
, 
hd: hd(l)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
member-less_than, 
length_wf, 
equal_wf, 
hd_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
reduce_hd_cons_lemma, 
length_of_cons_lemma, 
not_wf, 
l_member_wf, 
less_than_wf, 
list_wf, 
cons_member, 
l_before_wf, 
cons_before
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
because_Cache, 
unionElimination, 
imageElimination, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
universeEquality, 
independent_functionElimination, 
inlFormation
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  hd(L)  before  x  \mmember{}  L  supposing  \mneg{}(x  =  hd(L)))  supposing  0  <  ||L||
Date html generated:
2017_04_17-AM-08_47_53
Last ObjectModification:
2017_02_27-PM-05_06_24
Theory : list_1
Home
Index