Nuprl Lemma : insert-no-combine-permutation
∀T:Type. ∀cmp:comparison(T). ∀L:T List. ∀u:T.  permutation(T;insert-no-combine(cmp;u;L);[u] @ L)
Proof
Definitions occuring in Statement : 
insert-no-combine: insert-no-combine(cmp;x;l)
, 
comparison: comparison(T)
, 
permutation: permutation(T;L1;L2)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
insert-no-combine: insert-no-combine(cmp;x;l)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
append: as @ bs
, 
uimplies: b supposing a
, 
comparison: comparison(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
all_wf, 
permutation_wf, 
insert-no-combine_wf, 
append_wf, 
cons_wf, 
nil_wf, 
list_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
permutation_weakening, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
comparison_wf, 
permutation_functionality_wrt_permutation, 
cons_functionality_wrt_permutation, 
permutation-swap-first2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
independent_isectElimination, 
rename, 
natural_numberEquality, 
applyEquality, 
setElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}cmp:comparison(T).  \mforall{}L:T  List.  \mforall{}u:T.    permutation(T;insert-no-combine(cmp;u;L);[u]  @  L)
Date html generated:
2017_04_17-AM-08_30_42
Last ObjectModification:
2017_02_27-PM-04_52_15
Theory : list_1
Home
Index