Nuprl Lemma : iseg_extend

[T:Type]. ∀l1:T List. ∀v:T. ∀l2:T List.  (l1 ≤ l2  l1 [v] ≤ l2 supposing ||l1|| < ||l2|| c∧ (l2[||l1||] v ∈ T))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 select: L[n] length: ||as|| append: as bs cons: [a b] nil: [] list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] cand: c∧ B all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T cand: c∧ B exists: x:A. B[x] prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q subtract: m sq_type: SQType(T) rev_implies:  Q nat: less_than': less_than'(a;b) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b]
Lemmas referenced :  member-less_than length_wf tl_wf equal_wf list_wf append_wf cons_wf nil_wf less_than_wf select_wf non_neg_length decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf exists_wf append_assoc length-append decidable__lt add-is-int-iff intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma false_wf length_wf_nat nat_wf squash_wf true_wf select_append_back lelt_wf iff_weakening_equal minus-one-mul add-mul-special zero-mul subtype_base_sq int_subtype_base and_wf list_induction length_of_nil_lemma list_ind_cons_lemma stuck-spread base_wf list_ind_nil_lemma reduce_tl_nil_lemma length_of_cons_lemma reduce_tl_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis independent_isectElimination axiomEquality rename dependent_pairFormation productEquality because_Cache dependent_functionElimination natural_numberEquality unionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll universeEquality hyp_replacement equalitySymmetry applyLambdaEquality imageElimination pointwiseFunctionality equalityTransitivity promote_hyp baseApply closedConclusion baseClosed dependent_set_memberEquality addEquality setElimination applyEquality imageMemberEquality independent_functionElimination instantiate functionEquality

Latex:
\mforall{}[T:Type]
    \mforall{}l1:T  List.  \mforall{}v:T.  \mforall{}l2:T  List.
        (l1  \mleq{}  l2  {}\mRightarrow{}  l1  @  [v]  \mleq{}  l2  supposing  ||l1||  <  ||l2||  c\mwedge{}  (l2[||l1||]  =  v))



Date html generated: 2017_04_17-AM-07_31_05
Last ObjectModification: 2017_02_27-PM-04_08_58

Theory : list_1


Home Index