Nuprl Lemma : last-upto

n:ℕ+(upto(n) upto(n 1) [n 1])


Proof




Definitions occuring in Statement :  upto: upto(n) append: as bs cons: [a b] nil: [] nat_plus: + all: x:A. B[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B int_seg: {i..j-} nat_plus: + lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) guard: {T} upto: upto(n) from-upto: [n, m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b has-value: (a)↓ rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  upto_decomp nat_plus_subtype_nat subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt itermAdd_wf int_term_value_add_lemma lelt_wf nat_plus_wf subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma from-upto-shift lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf zero-add value-type-has-value int-value-type from-upto-is-nil
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule dependent_set_memberEquality setElimination rename natural_numberEquality independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache addEquality instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination equalityElimination productElimination promote_hyp callbyvalueReduce

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  (upto(n)  \msim{}  upto(n  -  1)  @  [n  -  1])



Date html generated: 2017_04_17-AM-07_57_49
Last ObjectModification: 2017_02_27-PM-04_29_13

Theory : list_1


Home Index